Non-adiabatic holonomic manipulation of the polariton qubit in circuit QED

被引:2
作者
Xue, Zheng-Yuan [1 ,2 ]
Yu, Wei-Can [1 ,2 ]
Yang, Li-Na [1 ,2 ]
Hu, Yong [3 ]
机构
[1] S China Normal Univ, Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Guangdong, Peoples R China
[2] S China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Guangdong, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
关键词
QUANTUM COMPUTATION; SUPERCONDUCTING CIRCUITS; EXPERIMENTAL REALIZATION; INFORMATION; RESONANCE; GATES;
D O I
10.1140/epjd/e2015-50886-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
As a qubit usually has a limited lifetime, its manipulation should be as fast as possible, and thus non-adiabatic operation is more preferable. Moreover, as a qubit inevitably interacts with its surrounding environment, robust operations are of great significance. Here, we propose a scheme for quantum manipulation of the polariton qubit in circuit QED using non-adiabatic holonomy, which is inherently fast and robust. In particularly, the polariton qubit is shown to be robust against arbitrary low-frequency noise due to its near symmetric spectrum, which can also be convenient manipulated by external microwave driven fields in a holonomic way. Therefore, our scheme presents a promising way of manipulating polariton qubits for on-chip solid-state quantum computation.
引用
收藏
页数:4
相关论文
共 34 条
[1]   Experimental realization of non-Abelian non-adiabatic geometric gates [J].
Abdumalikov, A. A., Jr. ;
Fink, J. M. ;
Juliusson, K. ;
Pechal, M. ;
Berger, S. ;
Wallraff, A. ;
Filipp, S. .
NATURE, 2013, 496 (7446) :482-485
[2]   Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin [J].
Arroyo-Camejo, Silvia ;
Lazariev, Andrii ;
Hell, Stefan W. ;
Balasubramanian, Gopalakrishnan .
NATURE COMMUNICATIONS, 2014, 5
[3]   Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Sank, D. ;
Jeffrey, E. ;
Chen, Y. ;
Yin, Y. ;
Chiaro, B. ;
Mutus, J. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Wenner, J. ;
White, T. C. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[4]   Nonlinear response of the vacuum Rabi resonance [J].
Bishop, Lev S. ;
Chow, J. M. ;
Koch, Jens ;
Houck, A. A. ;
Devoret, M. H. ;
Thuneberg, E. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE PHYSICS, 2009, 5 (02) :105-109
[5]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[6]   Superconducting quantum bits [J].
Clarke, John ;
Wilhelm, Frank K. .
NATURE, 2008, 453 (7198) :1031-1042
[7]   Protecting superconducting qubits with a universal quantum degeneracy point [J].
Deng, X-H ;
Hu, Y. ;
Tian, Lin .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2013, 26 (11)
[8]   Superconducting Circuits for Quantum Information: An Outlook [J].
Devoret, M. H. ;
Schoelkopf, R. J. .
SCIENCE, 2013, 339 (6124) :1169-1174
[9]  
Du J., 2006, PHYS REV A, V74
[10]   Geometric manipulation of trapped ions for quantum computation [J].
Duan, LM ;
Cirac, JI ;
Zoller, P .
SCIENCE, 2001, 292 (5522) :1695-1697