Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors

被引:3553
作者
El-Kady, Maher F. [1 ,2 ,3 ]
Strong, Veronica [1 ,2 ]
Dubin, Sergey [1 ,2 ]
Kaner, Richard B. [1 ,2 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[3] Cairo Univ, Fac Sci, Dept Chem, Giza 12613, Egypt
[4] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
关键词
DOUBLE-LAYER CAPACITOR; ENERGY-STORAGE; ELECTROPHORETIC DEPOSITION; MICRO-SUPERCAPACITORS; MATERIALS SCIENCE; GRAPHITE OXIDE; CARBON; FILMS; ELECTRODES; DENSITY;
D O I
10.1126/science.1216744
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, charge and discharge faster than batteries, they are still limited by low energy densities and slow rate capabilities. We used a standard LightScribe DVD optical drive to do the direct laser reduction of graphite oxide films to graphene. The produced films are mechanically robust, show high electrical conductivity (1738 siemens per meter) and specific surface area (1520 square meters per gram), and can thus be used directly as EC electrodes without the need for binders or current collectors, as is the case for conventional ECs. Devices made with these electrodes exhibit ultrahigh energy density values in different electrolytes while maintaining the high power density and excellent cycle stability of ECs. Moreover, these ECs maintain excellent electrochemical attributes under high mechanical stress and thus hold promise for high-power, flexible electronics.
引用
收藏
页码:1326 / 1330
页数:5
相关论文
共 32 条
[1]  
[Anonymous], 2010, Battery Management Systems for Large Lithium Ion Battery Packs
[2]   Preparation and electrochemical performance of activated carbon thin films with polyethylene oxide-salt addition for electrochemical capacitor applications [J].
Chandrasekaran, R. ;
Soneda, Y. ;
Yamashita, J. ;
Kodama, M. ;
Hatori, H. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (10) :1349-1355
[3]   Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors [J].
Chmiola, John ;
Largeot, Celine ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Gogotsi, Yury .
SCIENCE, 2010, 328 (5977) :480-483
[4]   High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition [J].
Du, Chunsheng ;
Pan, Ning .
NANOTECHNOLOGY, 2006, 17 (21) :5314-5318
[5]   Supercapacitors using carbon nanotubes films by electrophoretic deposition [J].
Du, Chunsheng ;
Pan, Ning .
JOURNAL OF POWER SOURCES, 2006, 160 (02) :1487-1494
[6]  
Gao W, 2011, NAT NANOTECHNOL, V6, P496, DOI [10.1038/NNANO.2011.110, 10.1038/nnano.2011.110]
[7]   Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors [J].
Lee, Seung Woo ;
Gallant, Betar M. ;
Byon, Hye Ryung ;
Hammond, Paula T. ;
Shao-Horn, Yang .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (06) :1972-1985
[8]   Advanced Materials for Energy Storage [J].
Liu, Chang ;
Li, Feng ;
Ma, Lai-Peng ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2010, 22 (08) :E28-+
[9]   Graphene-Based Supercapacitor with an Ultrahigh Energy Density [J].
Liu, Chenguang ;
Yu, Zhenning ;
Neff, David ;
Zhamu, Aruna ;
Jang, Bor Z. .
NANO LETTERS, 2010, 10 (12) :4863-4868
[10]   Materials science - Electrochemical capacitors for energy management [J].
Miller, John R. ;
Simon, Patrice .
SCIENCE, 2008, 321 (5889) :651-652