A novel color space of fundus images for automatic exudates detection

被引:16
作者
Khojasteh, Parham [1 ]
Aliahmad, Behzad [1 ]
Kumar, Dinesh Kant [1 ]
机构
[1] RMIT Univ, Sch Engn, Biosignal Lab, Melbourne, Vic, Australia
关键词
Exudate detection; Convolutional neural networks; Color space representation; Machine learning; Retinal image analysis; Deep learning; DIABETIC-RETINOPATHY; RETINAL IMAGES; NEURAL-NETWORKS; SEGMENTATION; IDENTIFICATION; PHOTOGRAPHS; DIAGNOSIS;
D O I
10.1016/j.bspc.2018.12.004
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper has compared the performance of different color spaces of fundus images for automatic detection of exudates. A convolutional neural network was employed to assess the performances of different color spaces generated by orthogonal transformation of the original colors in red/green/blue (RGB) space. Experiments were conducted on two publicly available databases: (1) DIARETDB1 and (2) e-Ophtha. Based on the experimental results, this study has proposed a new color space of fundus images with three channels: (i) second eigenchannel of the RGB space, (ii) hue and (iii) saturation channels of Hue/Saturation and Intensity (HSI) space. This achieved an accuracy, sensitivity and specificity of 98.2%, 0.99 and 0.98, respectively. Twenty times 20-fold cross validation technique confirmed that proposed color space obtained higher replicability compared with conventional color spaces. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:240 / 249
页数:10
相关论文
共 49 条
[11]   Multiscale segmentation of exudates in retinal images using contextual cues and ensemble classification [J].
Fraz, M. Moazam ;
Jahangir, Waqas ;
Zahid, Saqib ;
Hamayun, Mian M. ;
Barman, Sarah A. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 35 :50-62
[12]   RETINAL VESSEL SEGMENTATION VIA DEEP LEARNING NETWORK AND FULLY-CONNECTED CONDITIONAL RANDOM FIELDS [J].
Fu, Huazhu ;
Xu, Yanwu ;
Wong, Damon Wing Kee ;
Liu, Jiang .
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, :698-701
[13]   Segmentation of histological images and fibrosis identification with a convolutional neural network [J].
Fu, Xiaohang ;
Liu, Tong ;
Xiong, Zhaohan ;
Smaill, Bruce H. ;
Stiles, Martin K. ;
Zhao, Jichao .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 98 :147-158
[14]   Neural network based detection of hard exudates in retinal images [J].
Garcia, Maria ;
Sanchez, Clara I. ;
Lopez, Maria I. ;
Abasolo, Daniel ;
Hornero, Roberto .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2009, 93 (01) :9-19
[15]   Automated Identification of Diabetic Retinopathy Using Deep Learning [J].
Gargeya, Rishab ;
Leng, Theodore .
OPHTHALMOLOGY, 2017, 124 (07) :962-969
[16]   Exudate-based diabetic macular edema detection in fundus images using publicly available datasets [J].
Giancardo, Luca ;
Meriaudeau, Fabrice ;
Karnowski, Thomas P. ;
Li, Yaqin ;
Garg, Seema ;
Tobin, Kenneth W., Jr. ;
Chaum, Edward .
MEDICAL IMAGE ANALYSIS, 2012, 16 (01) :216-226
[17]   A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography [J].
Grassmann, Felix ;
Mengelkamp, Judith ;
Brandl, Caroline ;
Harsch, Sebastian ;
Zimmermann, Martina E. ;
Linkohr, Birgit ;
Peters, Annette ;
Heid, Iris M. ;
Palm, Christoph ;
Weber, Bernhard H. F. .
OPHTHALMOLOGY, 2018, 125 (09) :1410-1420
[18]  
Harangi B, 2014, IEEE ENG MED BIO, P130, DOI 10.1109/EMBC.2014.6943546
[19]   Automatic exudate detection by fusing multiple active contours and regionwise classification [J].
Harangi, Balazs ;
Hajdu, Andras .
COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 54 :156-171
[20]   Quantitative analysis of retinopathy in type 2 diabetes: identification of prognostic parameters for developing visual loss secondary to diabetic maculopathy [J].
Hove, MN ;
Kristensen, JK ;
Lauritzen, T ;
Bek, T .
ACTA OPHTHALMOLOGICA SCANDINAVICA, 2004, 82 (06) :679-685