A novel color space of fundus images for automatic exudates detection

被引:16
作者
Khojasteh, Parham [1 ]
Aliahmad, Behzad [1 ]
Kumar, Dinesh Kant [1 ]
机构
[1] RMIT Univ, Sch Engn, Biosignal Lab, Melbourne, Vic, Australia
关键词
Exudate detection; Convolutional neural networks; Color space representation; Machine learning; Retinal image analysis; Deep learning; DIABETIC-RETINOPATHY; RETINAL IMAGES; NEURAL-NETWORKS; SEGMENTATION; IDENTIFICATION; PHOTOGRAPHS; DIAGNOSIS;
D O I
10.1016/j.bspc.2018.12.004
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper has compared the performance of different color spaces of fundus images for automatic detection of exudates. A convolutional neural network was employed to assess the performances of different color spaces generated by orthogonal transformation of the original colors in red/green/blue (RGB) space. Experiments were conducted on two publicly available databases: (1) DIARETDB1 and (2) e-Ophtha. Based on the experimental results, this study has proposed a new color space of fundus images with three channels: (i) second eigenchannel of the RGB space, (ii) hue and (iii) saturation channels of Hue/Saturation and Intensity (HSI) space. This achieved an accuracy, sensitivity and specificity of 98.2%, 0.99 and 0.98, respectively. Twenty times 20-fold cross validation technique confirmed that proposed color space obtained higher replicability compared with conventional color spaces. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:240 / 249
页数:10
相关论文
共 49 条
[1]   Automated Early Detection of Diabetic Retinopathy [J].
Abramoff, Michael D. ;
Reinhardt, Joseph M. ;
Russell, Stephen R. ;
Folk, James C. ;
Mahajan, Vinit B. ;
Niemeijer, Meindert ;
Quellec, Gwenole .
OPHTHALMOLOGY, 2010, 117 (06) :1147-1154
[2]   Statistical atlas based exudate segmentation [J].
Ali, Sharib ;
Sidibe, Desire ;
Adal, Kedir M. ;
Giancardo, Luca ;
Chaum, Edward ;
Karnowski, Thomas P. ;
Meriaudeau, Fabrice .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2013, 37 (5-6) :358-368
[3]  
[Anonymous], 2007, P BRIT MACHINE VISIO, DOI DOI 10.5244/C.21
[4]  
[Anonymous], INVEST OPHTH VIS SCI
[5]   Gaussian mixture model based segmentation methods for brain MRI images [J].
Balafar, M. A. .
ARTIFICIAL INTELLIGENCE REVIEW, 2014, 41 (03) :429-439
[6]   Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network [J].
Charron, Odelin ;
Lallement, Alex ;
Jarnet, Delphine ;
Noblet, Vincent ;
Clavier, Jean-Baptiste ;
Meyer, Philippe .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 95 :43-54
[7]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[8]   TeleOphta: Machine learning and image processing methods for teleophthalmology [J].
Decenciere, E. ;
Cazuguel, G. ;
Zhang, X. ;
Thibault, G. ;
Klein, J. -C. ;
Meyer, F. ;
Marcotegui, B. ;
Quellec, G. ;
Lamard, M. ;
Danno, R. ;
Elie, D. ;
Massin, P. ;
Viktor, Z. ;
Erginay, A. ;
Lay, B. ;
Chabouis, A. .
IRBM, 2013, 34 (02) :196-203
[9]   Screening for diabetic retinopathy using computer based image analysis and statistical classification [J].
Ege, BM ;
Hejlesen, OK ;
Larsen, OV ;
Moller, K ;
Jennings, B ;
Kerr, D ;
Cavan, DA .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2000, 62 (03) :165-175
[10]   Automated detection of exudates for diabetic retinopathy screening [J].
Fleming, Alan D. ;
Philip, Sam ;
Goatman, Keith A. ;
Williams, Graeme J. ;
Olson, John A. ;
Sharp, Peter F. .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (24) :7385-7396