The bifurcation and exact travelling wave solutions of (1+2)-dimensional nonlinear Schrodinger equation with dual-power law nonlinearity

被引:20
作者
Liu, Haihong [1 ,2 ]
Yan, Fang [2 ]
Xu, Chenglin [1 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming 650092, Peoples R China
[2] Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China
关键词
Bifurcation; Solitary wave solution; Periodic wave solution; Nonlinear Schrodinger equation; 1-SOLITON SOLUTION; PERIODIC-SOLUTIONS; MEDIA;
D O I
10.1007/s11071-011-9995-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
By using the method of dynamical systems, this paper researches the bifurcation and the exact traveling wave solutions for a (1+2)-dimensional nonlinear Schrodinger equation with dual-power law nonlinearity. Exact parametric representations of all wave solutions are given.
引用
收藏
页码:465 / 473
页数:9
相关论文
共 16 条
[1]  
Ablowitz M., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[2]  
[Anonymous], 1980, DIRECT METHODS SOLIT
[3]   1-soliton solution of (1+2)-dimensional nonlinear Schrodinger's equation in dual-power law media [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2008, 372 (38) :5941-5943
[4]   1-Soliton solution of 1+2 dimensional nonlinear Schrodinger's equation in power law media [J].
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) :1830-1833
[5]   An extended subequation rational expansion method with symbolic computation and solutions of the nonlinear Schrodinger equation model [J].
Chen, Yong ;
Li, Biao .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2008, 2 (02) :242-255
[6]  
Drazin P.G., 1993, Solitons, An Introduction
[7]   PERIODIC-SOLUTIONS OF KDV EQUATION [J].
LAX, PD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (01) :141-188
[8]   Some exact solutions of the variable coefficient Schrodinger equation [J].
Liu, Xi-Qiang ;
Yan, Zhi-Lian .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (08) :1355-1359
[9]   Symmetry results for decay solutions of elliptic systems in the whole space [J].
Ma, Li ;
Liu, Baiyu .
ADVANCES IN MATHEMATICS, 2010, 225 (06) :3052-3063
[10]   Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers [J].
Tian, B ;
Gao, YT .
PHYSICS LETTERS A, 2005, 342 (03) :228-236