Vertex algebras associated to modified regular representations of the Virasoro algebra

被引:12
作者
Frenkel, Igor [2 ]
Zhu, Minxian [1 ]
机构
[1] Tsinghua Univ, Ctr Math Sci, Beijing 100084, Peoples R China
[2] Yale Univ, Dept Math, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
Vertex algebras; Virasoro algebra; BPZ-equations; Hypergeometric series;
D O I
10.1016/j.aim.2012.02.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an abstract construction, based on the Belavin-Polyakov-Zamolodchikov equations, of a family of vertex algebras with conformal elements of rank 26 associated to the modified regular representations of the Virasoro algebra. The vertex operators are obtained from the products of intertwining operators for a pair of Virasoro algebras. We explicitly determine the structure coefficients that yield the axioms of vertex algebras. In the process of our construction, we obtain new hypergeometric identities. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:3468 / 3507
页数:40
相关论文
共 14 条
[1]  
[Anonymous], 1966, GEN HYPERGEOMETRIC F
[2]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[3]   DEGENERATE CONFORMAL FIELD-THEORIES AND EXPLICIT EXPRESSIONS FOR SOME NULL VECTORS [J].
BENOIT, L ;
SAINTAUBIN, Y .
PHYSICS LETTERS B, 1988, 215 (03) :517-522
[4]  
Dong C., 1994, Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods, V56 II, P295
[5]   CONFORMAL ALGEBRA AND MULTIPOINT CORRELATION-FUNCTIONS IN 2D STATISTICAL-MODELS [J].
DOTSENKO, VS ;
FATEEV, VA .
NUCLEAR PHYSICS B, 1984, 240 (03) :312-348
[6]  
FEIGIN BL, 1984, LECT NOTES MATH, V1060, P230
[7]  
Frenkel E., 2004, MATH SURVEYS MONOGR, V88
[8]  
Frenkel I., 1992, DUKE MATH J, V66
[9]   Modified regular representations of affine and Virasoro algebras, VOA structure and semi-infinite cohomology [J].
Frenkel, Igor B. ;
Styrkas, Konstantin .
ADVANCES IN MATHEMATICS, 2006, 206 (01) :57-111
[10]  
Huang Y., 1995, Sel. Math. New Ser., V1, P699