Existence of mild solutions for a singular parabolic equation and stabilization

被引:17
作者
Bougherara, Brahim [1 ]
Giacomoni, Jacques [2 ]
机构
[1] Ecole Normale Super Kouba, Dept Matemat, Vieux Kouba, Alger, Algeria
[2] CNRS, LMAP, UMR 5142, F-64013 Pau, France
关键词
Singular parabolic equation; p-Laplace equation; nonlinear semi-group theory;
D O I
10.1515/anona-2015-0002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and the uniqueness of a positive mild solution for the following singular nonlinear problem with homogeneous Dirichlet boundary conditions: {partial derivative(t)u - Delta(p)u = u(-delta) + f(x, u) in (0, T) x Omega (def)(=) Q(T), u = 0 on (0, T) x partial derivative Omega, u > 0 in Q(T), u(0, x) = u(0) >= 0 in Omega, where Omega stands for a regular bounded domain of R-N, Delta(p)u is the p-Laplacian operator defined by Delta(p)u = div(vertical bar del u vertical bar(p-2)vertical bar del u vertical bar), 1 < p < infinity, delta > 0 and T > 0. The nonlinear term f : Omega x R -> R is a bounded below Caratheodory function and nonincreasing with respect to the second variable (for a.e. x epsilon Omega). We prove for any initial positive data u(0) epsilon <(D(A))over bar>(L infinity) the existence of a mild solution to (S-t). Then, we deduce some stabilization results for problem (S-t) in L-infinity(Omega) when p >= 2. This complements some results obtained in [2] stated with the additional restriction delta < 2 + 1/p-1.
引用
收藏
页码:123 / 134
页数:12
相关论文
共 19 条
[1]  
[Anonymous], 1975, Lect. Notes Biomath.
[2]  
Aris R., 1979, MATH MODELLING TECHN
[3]   A singular parabolic equation: Existence, stabilization [J].
Badra, Mehdi ;
Bal, Kaushik ;
Giacomoni, Jacques .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (09) :5042-5075
[4]  
Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5
[5]  
Bougherara B., DISCRETE CO IN PRESS
[6]  
Bougherara B., NONLINEAR A IN PRESS
[7]  
Brezis H, 2011, UNIVERSITEXT, P1
[8]  
Diaz J.I, 1985, Elliptic Equations, Research Notes in Mathematics, V106
[9]   Multi-parameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term [J].
Ghergu, M ;
Radulescu, V .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :61-83
[10]  
Ghergu M., 2008, Oxford Lecture Ser. Math. Appl., V37