Hydrogen production from ethanol in nitrogen microwave plasma at atmospheric pressure

被引:34
作者
Hrycak, Bartosz [1 ]
Czylkowski, Dariusz [1 ]
Miotk, Robert [1 ,2 ]
Dors, Miroslaw [1 ]
Jasinski, Mariusz [1 ]
Mizeraczyk, Jerzy [1 ,3 ]
机构
[1] Polish Acad Sci, Szewalski Inst Fluid Flow Machinery, PL-80231 Gdansk, Poland
[2] Gdansk Univ Technol, Fac Mech Engn, Conjoint Doctoral Sch, PL-80233 Gdansk, Poland
[3] Gdynia Maritime Univ, Dept Marine Elect, PL-81225 Gdynia, Poland
关键词
hydrogen production; microwave plasma; atmospheric pressure; liquid hydrocarbons; ethanol reforming; STEAM; GASIFICATION; TORNADO; DECOMPOSITION; TEMPERATURE; METHANE; BIOMASS; COAL;
D O I
10.1515/chem-2015-0039
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogen seems to be one of the most promising alternative energy sources. It is a renewable fuel as it could be produced from e.g. waste or bio-ethanol. Furthermore hydrogen is compatible with fuel cells and is environmentally clean. In contrast to conventional methods of hydrogen production such as water electrolysis or coal gasification we propose a method based on atmospheric pressure microwave plasma. In this paper we present results of the experimental investigations of hydrogen production from ethanol in the atmospheric pressure plasma generated in waveguide-supplied cylindrical type nozzleless microwave (2.45 GHz) plasma source (MPS). Nitrogen was used as a working gas. All experimental tests were performed with the nitrogen flow rate Q ranged from 1500 to 3900 NL h(-1) and absorbed microwave power P-A up to 5 kW. Ethanol was introduced into the plasma using the induction heating vaporizer. The process resulted in an ethanol conversion rate greater than 99%. The hydrogen production rate was up to 728 NL[H-2] h(-1) and the energy efficiency was 178 NL[H-2] per kWh of absorbed microwave energy.
引用
收藏
页码:317 / 324
页数:8
相关论文
共 45 条
[11]   Thermal plasma technology for the treatment of wastes: A critical review [J].
Gomez, E. ;
Rani, D. Amutha ;
Cheeseman, C. R. ;
Deegan, D. ;
Wise, M. ;
Boccaccini, A. R. .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 161 (2-3) :614-626
[12]   Microwave plasma torches driven by surface wave applied for hydrogen production [J].
Henriques, J. ;
Bundaleska, N. ;
Tatarova, E. ;
Dias, F. M. ;
Ferreira, C. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (01) :345-354
[13]   An overview of hydrogen production technologies [J].
Holladay, J. D. ;
Hu, J. ;
King, D. L. ;
Wang, Y. .
CATALYSIS TODAY, 2009, 139 (04) :244-260
[14]   Gasification of biomass in water/gas-stabilized plasma for syngas production [J].
Hrabovsky, M. ;
Konrad, M. ;
Kopecky, V. ;
Hlina, M. ;
Kavka, T. ;
van Oost, G. ;
Beeckman, E. ;
Defoort, B. .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 :B1199-B1206
[15]  
Hrycak B., 2011, P INT C RES APPL PLA
[16]  
Hrycak B., INT J HYDRO IN PRESS
[17]  
Hrycak B, 2012, PRZ ELEKTROTECHNICZN, V88, P98
[18]   Application of atmospheric pressure microwave plasma source for production of hydrogen via methane reforming [J].
Jasinski, M. ;
Dors, M. ;
Mizeraczyk, J. .
EUROPEAN PHYSICAL JOURNAL D, 2009, 54 (02) :179-183
[19]   Destruction of Freon HFC-134a Using a Nozzleless Microwave Plasma Source [J].
Jasinski, Mariusz ;
Dors, Miroslaw ;
Mizeraczyk, Jerzy .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2009, 29 (05) :363-372
[20]   Hydrogasification of carbon in an atmospheric pressure microwave plasma [J].
Kim, Yongho ;
Abbate, Sara ;
Ziock, Hans ;
Anderson, Graydon K. ;
Rosocha, Louis A. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2007, 35 (06) :1677-1681