Non-coercive problems for Kirchhoff-Love plates with thin rigid inclusion

被引:11
作者
Khludnev, Alexander [1 ]
机构
[1] Novosibirsk State Univ, Lavrentyev Inst Hydrodynam RAS, Novosibirsk 630090, Russia
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 02期
关键词
Elastic plate; Thin rigid inclusion; Crack; Variational inequality; Non-coercive boundary problem; QUASI-STATIC DELAMINATION; EQUILIBRIUM PROBLEMS; ELASTIC BODIES; CRACK;
D O I
10.1007/s00033-022-01693-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we consider a boundary value problem for an elastic plate with a thin rigid inclusion in a non-coercive case. Both vertical and horizontal displacements of the plate are considered in the frame of the considered model. The inclusion is assumed to be delaminated from the plate which provide; a crack between the inclusion and the surrounding elastic body. To guarantee a mutual non-penetration between crack faces, we consider inequality type boundary conditions with unknown set of a contact. A solution existence of the equilibrium problems is proved. Displacements of the plate in the x3-direction can be fixed at one or two points. In these cases, we also prove a solution existence of the boundary value problems.
引用
收藏
页数:18
相关论文
共 31 条
[1]  
[Anonymous], 1997, Differentiable functions on bad domains
[2]  
Attouch H., 2014, OPTIMIZATION, DOI [10.1137/1.9781611973488, DOI 10.1137/1.9781611973488]
[3]   Numerical size estimates of inclusions in Kirchhoff-Love elastic plates [J].
Bilotta, Antonio ;
Morassi, Antonino ;
Rosset, Edi ;
Turco, Emilio ;
Vessella, Sergio .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2019, 168 :58-72
[4]   Quasistatic Delamination of Sandwich-Like Kirchhoff-Love Plates [J].
Freddi, Lorenzo ;
Roubicek, Tomas ;
Zanini, Chiara .
JOURNAL OF ELASTICITY, 2013, 113 (02) :219-250
[5]   Quasistatic delamination models for Kirchhoff-Love plates [J].
Freddi, Lorenzo ;
Paroni, Roberto ;
Roubicek, Tomas ;
Zanini, Chiara .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (11) :845-865
[6]   On the junction of elastic plates and beams [J].
Gaudiello, A ;
Monneau, R ;
Mossino, J ;
Murat, F ;
Sili, A .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (08) :717-722
[7]   Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multi-structure [J].
Gaudiello, Antonio ;
Panasenko, Grigory ;
Piatnitski, Andrey .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (05)
[8]  
Khludnev A., 2010, Elasticity Problems in Nonsmooth Domains in Russian
[9]   Inverse problems for elastic body with closely located thin inclusions [J].
Khludnev, A. M. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (05)
[10]   On thin inclusions in elastic bodies with defects [J].
Khludnev, A. M. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02)