A Discontinuous Galerkin Method by Patch Reconstruction for Convection-Diffusion Problems

被引:8
作者
Sun, Zhiyuan [1 ]
Liu, Jun [1 ]
Wang, Pei [1 ,2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[2] Peking Univ, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Convection-diffusion problem; polygonal mesh; discontinuous Galerkin method; patch reconstruction; FINITE-ELEMENT-METHOD; EQUATIONS;
D O I
10.4208/aamm.OA-2019-0193
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we apply the discontinuous Galerkin method by patch reconstruction for solving convection-diffusion problems. The proposed method is highly efficient that it uses only one degree of freedom per element to achieve higher order approximation. It also enjoys the implementation flexibility on the general polygonal meshes. A priori error estimates of energy norm is devised. Numerical examples are presented to illustrate the theoretical results and the efficiency of the method.
引用
收藏
页码:729 / 747
页数:19
相关论文
共 34 条
[31]  
SHISHKIN G. I., 1995, ZH VYCH MAT MAT FIZ, V35, P542
[32]   PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab [J].
Talischi, Cameron ;
Paulino, Glaucio H. ;
Pereira, Anderson ;
Menezes, Ivan F. M. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2012, 45 (03) :309-328
[33]  
Verfurth R, 2013, NUMER MATH SCI COMPU
[34]   A weak Galerkin finite element method for second-order elliptic problems [J].
Wang, Junping ;
Ye, Xiu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 241 :103-115