A Discontinuous Galerkin Method by Patch Reconstruction for Convection-Diffusion Problems

被引:8
作者
Sun, Zhiyuan [1 ]
Liu, Jun [1 ]
Wang, Pei [1 ,2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[2] Peking Univ, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Convection-diffusion problem; polygonal mesh; discontinuous Galerkin method; patch reconstruction; FINITE-ELEMENT-METHOD; EQUATIONS;
D O I
10.4208/aamm.OA-2019-0193
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we apply the discontinuous Galerkin method by patch reconstruction for solving convection-diffusion problems. The proposed method is highly efficient that it uses only one degree of freedom per element to achieve higher order approximation. It also enjoys the implementation flexibility on the general polygonal meshes. A priori error estimates of energy norm is devised. Numerical examples are presented to illustrate the theoretical results and the efficiency of the method.
引用
收藏
页码:729 / 747
页数:19
相关论文
共 34 条
[1]  
[Anonymous], 1995, Acta Numer, DOI [DOI 10.1017/S0962492900002531, 10.1017/s0962492900002531]
[2]  
[Anonymous], 1996, Applied Mathematics and Mathematical Computation
[3]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[4]   DISCONTINUOUS GALERKIN METHODS FOR ADVECTION-DIFFUSION-REACTION PROBLEMS [J].
Ayuso, Blanca ;
Marini, L. Donatella .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1391-1420
[5]  
Bakhvalov N. S., 1969, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, V9, P841
[6]   A discontinuous hp finite element method for convection-diffusion problems [J].
Baumann, CE ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 175 (3-4) :311-341
[7]   MIMETIC FINITE DIFFERENCES FOR ELLIPTIC PROBLEMS [J].
Brezzi, Franco ;
Buffa, Annalisa ;
Lipnikov, Konstantin .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02) :277-295
[8]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259
[9]   Analysis of a multiscale discontinuous Galerkin method for convection-diffusion problems [J].
Buffa, A. ;
Hughes, T. J. R. ;
Sangalli, G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) :1420-1440
[10]   A robust WG finite element method for convection-diffusion-reaction equations [J].
Chen, Gang ;
Feng, Minfu ;
Xie, Xiaoping .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 315 :107-125