Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system

被引:81
|
作者
Ma, Jun [1 ,2 ]
Li, Fan [1 ]
Huang, Long [1 ]
Jin, Wu-Yin [3 ]
机构
[1] Lanzhou Univ Technol, Dept Phys, Lanzhou 730050, Peoples R China
[2] Key Lab Gansu Adv Control Ind Proc, Lanzhou 730050, Peoples R China
[3] Lanzhou Univ Technol, Coll Mechanoelect Engn, Lanzhou 730050, Peoples R China
关键词
Phase synchronization; Complete synchronization; Jacobi matrix; Parameter estimation; HODGKIN-HUXLEY NEURONS; LAG SYNCHRONIZATION; SECURE COMMUNICATION; ANTI-SYNCHRONIZATION; ANTIPHASE SYNCHRONIZATION; SPIRAL WAVE; TIME-DELAY; TRANSITION; NETWORKS; TRANSMISSION;
D O I
10.1016/j.cnsns.2010.12.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The two-parameter phase space in certain nonlinear system is investigated and the chaotic region of parameters are measured to show its chaotic properties. Within the chaotic parameter region, the complete synchronization, phase synchronization and parameters estimation are discussed in detail by using adaptive synchronization scheme and Lyapunov stability theory. Two changeable gain coefficients are introduced into the controllable positive Lyapunov function and thus the parameter observers. It is found that complete synchronization or phase synchronization occurs with different controllers being used though the parameter observers are the same. Phase synchronization is observed when zero eigenvalue of Jacobi matrix, which is composed of the errors of corresponding variables in the drive and driven chaotic systems. The optimized selection of controllers can induce transition of phase synchronization and complete synchronization. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3770 / 3785
页数:16
相关论文
共 50 条
  • [1] COEXISTENCE OF ANTI PHASE AND COMPLETE SYNCHRONIZATION IN A CHAOTIC FINANCE SYSTEM
    Kheiri, Hossein
    Vafaei, V.
    Vafaei, E.
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2012, 10 (01) : 33 - 45
  • [2] Routes to complete synchronization via phase synchronization in coupled nonidentical chaotic oscillators
    Rim, S
    Kim, I
    Kang, P
    Park, YJ
    Kim, CM
    PHYSICAL REVIEW E, 2002, 66 (01): : 1 - 015205
  • [3] Phase synchronization of a new chaotic system
    Vahedi, Shahed
    Noorani, Mohd Salmi Md
    INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013), 2013, 1557 : 137 - 139
  • [4] Synchronization of chaotic Liu system with uncertain parameters
    Wang, Hua
    Han, Zheng-Zhi
    Zhang, Wei
    Xie, Qi-Yue
    Wuli Xuebao/Acta Physica Sinica, 2008, 57 (05): : 2779 - 2783
  • [5] An adaptive synchronization of a chaotic system with unknown parameters
    Liu, Xiaoming
    Xiao, Zhicai
    Dong, Wang
    Lei, Junwei
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL I, PROCEEDINGS, 2009, : 309 - +
  • [6] Parameters Estimation, Mixed Synchronization, and Antisynchronization in Chaotic Systems
    Wang, Chunni
    He, Yujun
    Ma, Jun
    Huang, Long
    COMPLEXITY, 2014, 20 (01) : 64 - 73
  • [7] Synchronization of chaotic Liu system with uncertain parameters
    Wang Hua
    Han Zheng-Zhi
    Zhang Wei
    Xie Qi-Yue
    ACTA PHYSICA SINICA, 2008, 57 (05) : 2779 - 2783
  • [8] Complete synchronization of chaotic systems
    Saha, L. M.
    Budhraja, Mridula
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2007, 77A : 161 - 168
  • [9] Complete synchronization of chaotic complex nonlinear systems with uncertain parameters
    Gamal M. Mahmoud
    Emad E. Mahmoud
    Nonlinear Dynamics, 2010, 62 : 875 - 882
  • [10] Complete synchronization of chaotic complex nonlinear systems with uncertain parameters
    Mahmoud, Gamal M.
    Mahmoud, Emad E.
    NONLINEAR DYNAMICS, 2010, 62 (04) : 875 - 882