On Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation

被引:68
作者
Sun, ZZ
Zhu, QD
机构
[1] SE Univ, Dept Math Appl, Nanjing 210096, Peoples R China
[2] Human Normal Univ, Inst Comp, Changsha 410081, Peoples R China
关键词
Tsertsvadze; Kuramoto-Tsuzuki equation; finite difference; convergence; solvability;
D O I
10.1016/S0377-0427(98)00135-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we have proved the second-order convergence in L-infinity norm of the Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation. The existence, uniqueness and iterative algorithm are also discussed in detail. Furthermore, a L-infinity second order convergent linearized difference scheme is given for inhomogeneous equation. All results are obtained without any restrictions on the meshsizes. At last a numerical example is presented. (C) 1998 Elsevier Science B.V. All rights reserved. AMS classification. Primary 65M06; 65M12; 65M15.
引用
收藏
页码:289 / 304
页数:16
相关论文
共 7 条
[1]   ON FULLY DISCRETE GALERKIN METHODS OF 2ND-ORDER TEMPORAL ACCURACY FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
AKRIVIS, GD ;
DOUGALIS, VA ;
KARAKASHIAN, OA .
NUMERISCHE MATHEMATIK, 1991, 59 (01) :31-53
[2]   FINITE-DIFFERENCE DISCRETIZATION OF THE CUBIC SCHRODINGER-EQUATION [J].
AKRIVIS, GD .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (01) :115-124
[3]  
Sun Z., 1996, J SE U, V26, P87
[4]  
Sun ZZ, 1996, J COMPUT MATH, V14, P1
[5]  
TSERTSVADZE GZ, 1991, ZH VYCH MAT MAT FIZ, V31, P698
[6]  
Zhou Y, 1990, Application of discrete functional analysis to the finite difference method
[7]  
孙志忠, 1997, [南京大学学报. 数学半年刊, Journal of Nanjing University Mathematical Biquarterly], V14, P5