Random Fibonacci sequences

被引:23
作者
Sire, C [1 ]
Krapivsky, PL
机构
[1] Univ Toulouse 3, Phys Quant Lab, CNRS, UMR 5626, F-31062 Toulouse, France
[2] Boston Univ, Ctr Polymer Phys, Boston, MA 02215 USA
[3] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 42期
基金
美国国家科学基金会;
关键词
D O I
10.1088/0305-4470/34/42/322
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Solutions to the random Fibonacci recurrence x(n+1) = x(n) +/- betax(n-1) decrease (increase) exponentially, x(n) similar to exp(lambdan), for sufficiently small (large) beta. In the limits beta --> 0 and beta --> infinity, we expand the Lyapunov exponent lambda(beta) in powers of beta and beta (-1), respectively. For the classical case of beta = 1 we obtain exact non-perturbative results. In particular, an invariant measure associated with Ricatti variable r(n) = x(n+1)/x(n) is shown to exhibit plateaux around all rational r.
引用
收藏
页码:9065 / 9083
页数:19
相关论文
共 29 条
[1]  
[Anonymous], 1994, FDN COMPUTER SCI
[2]   Even-visiting random walks: Exact and asymptotic results in one dimension [J].
Bauer, M ;
Bernard, D ;
Luck, JM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (13) :2659-2679
[3]  
BELLISSARD J, 1986, LECTURE NOTES PHYSIC, V257, P99
[4]  
BENDER CM, 1999, ADV MATH METHODS SCE
[5]  
Bougerol P., 1985, PRODUCTS RANDOM MATR
[6]  
CoNWAY J. H., 1996, The Book of Numbers
[7]  
CRISANTI A, 1992, PRODUCTS RANDOM MATR
[8]   SINGULAR BEHAVIOR OF CERTAIN INFINITE PRODUCTS OF RANDOM 2X2 MATRICES [J].
DERRIDA, B ;
HILHORST, HJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (12) :2641-2654
[9]   LYAPOUNOV EXPONENT OF THE ONE DIMENSIONAL ANDERSON MODEL - WEAK DISORDER EXPANSIONS [J].
DERRIDA, B ;
GARDNER, E .
JOURNAL DE PHYSIQUE, 1984, 45 (08) :1283-1295
[10]   Lyapunov exponent and density of states of a one-dimensional non-Hermitian Schrodinger equation [J].
Derrida, B ;
Jacobsen, JL ;
Zeitak, R .
JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (1-2) :31-55