Absolutely indecomposable representations and Kac-Moody Lie algebras

被引:63
作者
Crawley-Boevey, W [1 ]
Van den Bergh, M
机构
[1] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
[2] Limburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium
关键词
D O I
10.1007/s00222-003-0329-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A conjecture of Kac states that the polynomial counting the number of absolutely indecomposable representations of a quiver over a finite field with given dimension vector has positive coefficients and furthermore that its constant term is equal to the multiplicity of the corresponding root in the associated Kac-Moody Lie algebra. In this paper we prove these conjectures for indivisible dimension vectors.
引用
收藏
页码:537 / 559
页数:23
相关论文
共 38 条
[1]   COHOMOLOGY OF INDUCED REPRESENTATIONS FOR ALGEBRAIC-GROUPS [J].
ANDERSEN, HH ;
JANTZEN, JC .
MATHEMATISCHE ANNALEN, 1984, 269 (04) :487-525
[2]   THE LEFSCHETZ TRACE FORMULA FOR ALGEBRAIC STACKS [J].
BEHREND, KA .
INVENTIONES MATHEMATICAE, 1993, 112 (01) :127-149
[3]  
BEILINSON AA, 1983, ASTERISQUE, V100
[4]   THEOREMS ON ACTIONS OF ALGEBRAIC GROUPS [J].
BIALYNIC.A .
ANNALS OF MATHEMATICS, 1973, 98 (03) :480-497
[5]  
BIALYNICKIBIRULA A, 1976, B ACAD POL SCI SMAP, V24, P667
[6]   On the exceptional fibres of Kleinian singularities [J].
Crawley-Boevey, W .
AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (05) :1027-1037
[7]   Normality of Marsden-Weinstein reductions for representations of quivers [J].
Crawley-Boevey, W .
MATHEMATISCHE ANNALEN, 2003, 325 (01) :55-79
[8]   Geometry of the moment map for representations of quivers [J].
Crawley-Boevey, W .
COMPOSITIO MATHEMATICA, 2001, 126 (03) :257-293
[9]   Noncommutative deformations of Kleinian singularities [J].
Crawley-Boevey, W ;
Holland, MP .
DUKE MATHEMATICAL JOURNAL, 1998, 92 (03) :605-635
[10]  
Deligne P., 1977, Lecture Notes in Mathematics, V569, P233