Modified YOLOv4-DenseNet Algorithm for Detection of Ventricular Septal Defects in Ultrasound Images

被引:16
作者
Chen, Shih-Hsin [1 ]
Wang, Chun-Wei [1 ]
Tai, I-Hsin [2 ]
Weng, Ken-Pen [3 ]
Chen, Yi-Hui [4 ,5 ]
Hsieh, Kai-Sheng [6 ,7 ]
机构
[1] Cheng Shiu Univ, Dept Informat Management, Kaohsiung 83347, Taiwan
[2] China Med Univ, Dept Pediat Cardiol, Chidrens Hosp, Taichung 40447, Taiwan
[3] Kaohsiung Vet Gen Hosp, Congenital Struct Heart Dis Ctr, Dept Pediat, 386,Dazhong 1st Rd, Kaohsiung, Taiwan
[4] Chang Gung Univ, Dept Informat Management, Taoyuan 33302, Taiwan
[5] Kaohsiung Chang Gung Mem Hosp, Kawasaki Dis Ctr, Kaohsiung 83301, Taiwan
[6] Shuang Ho Hosp Taipei Med Univ, Dept Pediat, New Taipei 23561, Taiwan
[7] Taipei Med Univ, Taipei Heart Inst, Taipei, Taiwan
来源
INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE | 2021年 / 6卷 / 07期
关键词
Ventricular Septal Defect (VSD); Doppler Echocardiographic Images; Object Detection; Deep Learning; YOLOv4;
D O I
10.9781/ijimai.2021.06.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Doctors conventionally analyzed echocardiographic images for diagnosing congenital heart diseases (CHDs). However, this process is laborious and depends on the experience of the doctors. This study investigated the use of deep learning algorithms for the image detection of the ventricular septal defect (VSD), the most common type. Color Doppler echocardiographic images containing three types of VSDs were tested with color doppler ultrasound medical images. To the best of our knowledge, this study is the first one to solve this object detection problem by using a modified YOLOv4-DenseNet framework. Because some techniques of YOLOv4 are not suitable for echocardiographic object detection, we revised the algorithm for this problem. The results revealed that the YOLOv4-DenseNet outperformed YOLOv4, YOLOv3, YOLOv3-SPP, and YOLOv3-DenseNet in terms of metric mAP-50. The F1-score of YOLOv4-DenseNet and YOLOv3-DenseNet were better than those of others. Hence, the contribution of this study establishes the feasibility of using deep learning for echocardiographic image detection of VSD investigation and a better YOLOv4-DenseNet framework could be employed for the VSD detection.
引用
收藏
页码:101 / 108
页数:8
相关论文
共 26 条
  • [1] A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI
    Avendi, M. R.
    Kheradvar, Arash
    Jafarkhani, Hamid
    [J]. MEDICAL IMAGE ANALYSIS, 2016, 30 : 108 - 119
  • [2] Bochkovskiy A., 2020, PREPRINT, DOI DOI 10.48550/ARXIV.2004.10934
  • [3] Automated annotation and quantitative description of ultrasound videos of the fetal heart
    Bridge, Christopher P.
    Ioannou, Christos
    Noble, J. Alison
    [J]. MEDICAL IMAGE ANALYSIS, 2017, 36 : 147 - 161
  • [4] ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart
    Carvalho, J. S.
    Allan, L. D.
    Chaoui, R.
    Copel, J. A.
    DeVore, G. R.
    Hecher, K.
    Lee, W.
    Munoz, H.
    Paladini, D.
    Tutschek, B.
    Yagel, S.
    [J]. ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2013, 41 (03) : 348 - 359
  • [5] Fast Keyframe Selection and Switching for ICP-based Camera Pose Estimation
    Chen, Chun-Wei
    Hsiao, Wen-Yuan
    Lin, Ting-Yu
    Wang, Jonas
    Shieh, Ming-Der
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [6] Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing
    Ghesu, Florin C.
    Krubasik, Edward
    Georgescu, Bogdan
    Singh, Vivek
    Zheng, Yefeng
    Hornegger, Joachim
    Comaniciu, Dorin
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1217 - 1228
  • [7] Disparities in the prenatal detection of critical congenital heart disease
    Hill, G. D.
    Block, J. R.
    Tanem, J. B.
    Frommelt, M. A.
    [J]. PRENATAL DIAGNOSIS, 2015, 35 (09) : 859 - 863
  • [8] Huang GL, 2017, IEEE ICC
  • [9] Echocardiography View Classification Using Quality Transfer Star Generative Adversarial Networks
    Liao, Zhibin
    Jafari, Mohammad H.
    Girgis, Hany
    Gin, Kenneth
    Rohling, Robert
    Abolmaesumi, Purang
    Tsang, Teresa
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 687 - 695
  • [10] Fast and accurate view classification of echocardiograms using deep learning
    Madani, Ali
    Arnaout, Ramy
    Mofrad, Mohammad
    Arnaout, Rima
    [J]. NPJ DIGITAL MEDICINE, 2018, 1