On the Compact Operators Case of the Bishop-Phelps-Bollobas Property for Numerical Radius

被引:1
作者
Garcia, Domingo [1 ]
Maestre, Manuel [1 ]
Martin, Miguel [2 ]
Roldan, Oscar [1 ]
机构
[1] Univ Valencia, Dept Analisis Matemat, Doctor Moliner 50, Burjasot Valencia 46100, Spain
[2] Univ Granada, Dept Analisis Matemat, Fac Ciencias, Granada 18071, Spain
关键词
Banach space; compact operator; Bishop-Phelps-Bollobas property; numerical radius attaining operator; approximation property; Primary; 46B04; Secondary; 46B20; 46B25; 46B28; LINDENSTRAUSS PROPERTIES; VERSION;
D O I
10.1007/s00025-021-01430-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Bishop-Phelps-Bollobas property for numerical radius restricted to the case of compact operators (BPBp-nu for compact operators in short). We show that C0(L) spaces have the BPBp-nu for compact operators for every Hausdorff topological locally compact space L. To this end, on the one hand, we provide some techniques allowing to pass the BPBp-nu for compact operators from subspaces to the whole space and, on the other hand, we prove some strong approximation property of C0(L) spaces and their duals. Besides, we also show that real Hilbert spaces and isometric preduals of l1 have the BPBp-nu for compact operators.
引用
收藏
页数:23
相关论文
共 25 条
[1]  
Acosta M.D., 2006, RACSAM REV R ACAD A, V100, P9
[2]  
Acosta M.D., 2019, Banach Center Publ., V119, P13
[3]   The Bishop-Phelps-Bolloba's theorem for operators [J].
Acosta, Maria D. ;
Aron, Richard M. ;
Garcia, Domingo ;
Maestre, Manuel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) :2780-2799
[4]   The Bishop-Phelps-Bollobas property for numerical radius of operators on L1(μ) [J].
Acosta, Maria D. ;
Fakhar, Majid ;
Soleimani-Mourchehkhorti, Maryam .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) :925-936
[5]   The Bishop-Phelps-Bollobas property for operators between spaces of continuous functions [J].
Acosta, Maria D. ;
Becerra-Guerrero, Julio ;
Choi, Yun Sung ;
Ciesielski, Maciej ;
Kim, Sun Kwang ;
Lee, Han Ju ;
Lourenco, Mary Lilian ;
Martin, Miguel .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 :323-332
[6]   THE BISHOP-PHELPS-BOLLOBAS VERSION OF LINDENSTRAUSS PROPERTIES A AND B [J].
Aron, Richard ;
Choi, Yun Sung ;
Kim, Sun Kwang ;
Lee, Han Ju ;
Martin, Miguel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (09) :6085-6101
[7]   On the Bishop-Phelps-Bollobas property for numerical radius in C(K) spaces [J].
Aviles, A. ;
Guirao, A. J. ;
Rodriguez, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (01) :395-421
[8]   A PROOF THAT EVERY BANACH SPACE IS SUBREFLEXIVE [J].
BISHOP, E ;
PHELPS, RR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (01) :97-&
[9]  
Bollobas B., 1970, B LOND MATH SOC, V2, P181, DOI DOI 10.1112/BLMS/2.2.181
[10]   NUMERICAL RADIUS OF RANK-1 OPERATORS ON BANACH SPACES [J].
Chica, Mario ;
Martin, Miguel ;
Meri, Javier .
QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (01) :89-100