The many colours of chromodomains

被引:135
作者
Brehm, A
Tufteland, KR
Aasland, R
Becker, PB
机构
[1] Adolfr Butenandt Inst Mol Biol, D-80336 Munich, Germany
[2] Univ Bergen, Dept Mol Biol, N-5020 Bergen, Norway
关键词
D O I
10.1002/bies.10392
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Local differences in chromatin organisation may profoundly affect the activity of eukaryotic genomes. Regulation at the level of DNA packaging requires the targeting of structural proteins and histone-modifying enzymes to specific sites and their stable or dynamic interaction with the nucleosomal fiber. The "chromodomain", a domain shared by many regulators of chromatin structure, has long been suspected to serve as a module mediating chromatin interactions in a variety of different protein contexts. However, recent functional analyses of a number of different chromodomains revealed an unexpected diversity of interaction targets, including histones, DNA and even RNA. The chromodomains of today seem to have evolved from a common ancestral fold to fulfill various functions in different molecular contexts. Combining information gained from recent functional and structural studies of chromodomains with a bioinformatic classification of their structure could lead to the definition of sequence motifs with predictive quality for chromodomain function. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:133 / 140
页数:8
相关论文
共 76 条
[1]  
AASLAND R, 1995, NUCLEIC ACIDS RES, V23, P3168
[2]   The SANT domain: A putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional corepressor N-CoR and TFIIIB [J].
Aasland, R ;
Stewart, AF ;
Gibson, T .
TRENDS IN BIOCHEMICAL SCIENCES, 1996, 21 (03) :87-88
[3]   Chromodomains are protein-RNA interaction modules [J].
Akhtar, A ;
Zink, D ;
Becker, PB .
NATURE, 2000, 407 (6802) :405-409
[4]   Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila [J].
Akhtar, A ;
Becker, PB .
MOLECULAR CELL, 2000, 5 (02) :367-375
[5]   RNAi and heterochromatin - a hushed-up affair [J].
Allshire, R .
SCIENCE, 2002, 297 (5588) :1818-1819
[6]   Structure of the chromatin binding (chromo) domain from mouse modifier protein 1 [J].
Ball, LJ ;
Murzina, NV ;
Broadhurst, RW ;
Raine, ARC ;
Archer, SJ ;
Stott, FJ ;
Murzin, AG ;
Singh, PB ;
Domaille, PJ ;
Laue, ED .
EMBO JOURNAL, 1997, 16 (09) :2473-2481
[7]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[8]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[9]   SOLUTION STRUCTURE AND DNA-BINDING PROPERTIES OF A THERMOSTABLE PROTEIN FROM THE ARCHAEON SULFOLOBUS-SOLFATARICUS [J].
BAUMANN, H ;
KNAPP, S ;
LUNDBACK, T ;
LADENSTEIN, R ;
HARD, T .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (11) :808-819
[10]   ATP-dependent nucleosomere modeling [J].
Becker, PB ;
Hörz, W .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :247-273