Laterality Classification of Fundus Images Using Interpretable Deep Neural Network

被引:19
作者
Jang, Yeonwoo [1 ]
Son, Jaemin [2 ]
Park, Kyu Hyung [3 ]
Park, Sang Jun [3 ]
Jung, Kyu-Hwan [2 ]
机构
[1] Univ Oxford, Dept Stat, Oxford, England
[2] VUNO Inc, 6F,507 Gangnam Daero, Seoul, South Korea
[3] Seoul Natl Univ, Bundang Hosp, Coll Med, Dept Ophthalmol, Seongnam, South Korea
基金
新加坡国家研究基金会;
关键词
Laterality classification; Fundus images; Deep neural network; Deep learning; Interpretability;
D O I
10.1007/s10278-018-0099-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In this paper, we aimed to understand and analyze the outputs of a convolutional neural network model that classifies the laterality of fundus images. Our model not only automatizes the classification process, which results in reducing the labors of clinicians, but also highlights the key regions in the image and evaluates the uncertainty for the decision with proper analytic tools. Our model was trained and tested with 25,911 fundus images (43.4% of macula-centered images and 28.3% each of superior and nasal retinal fundus images). Also, activation maps were generated to mark important regions in the image for the classification. Then, uncertainties were quantified to support explanations as to why certain images were incorrectly classified under the proposed model. Our model achieved a mean training accuracy of 99%, which is comparable to the performance of clinicians. Strong activations were detected at the location of optic disc and retinal blood vessels around the disc, which matches to the regions that clinicians attend when deciding the laterality. Uncertainty analysis discovered that misclassified images tend to accompany with high prediction uncertainties and are likely ungradable. We believe that visualization of informative regions and the estimation of uncertainty, along with presentation of the prediction result, would enhance the interpretability of neural network models in a way that clinicians can be benefitted from using the automatic classification system.
引用
收藏
页码:923 / 928
页数:6
相关论文
共 50 条
  • [31] Hemorrhage semantic segmentation in fundus images for the diagnosis of diabetic retinopathy by using a convolutional neural network
    Skouta, Ayoub
    Elmoufidi, Abdelali
    Jai-Andaloussi, Said
    Ouchetto, Ouail
    JOURNAL OF BIG DATA, 2022, 9 (01)
  • [32] H-Deep-Net: A deep hybrid network with stationary wavelet packet transforms for Retinal detachment classification through fundus images
    Yadav S.
    Murugan R.
    Goel T.
    Medical Engineering and Physics, 2023, 120
  • [33] MicroNet: microaneurysm detection in retinal fundus images using convolutional neural network
    Murugan, R.
    Roy, Parthapratim
    SOFT COMPUTING, 2022, 26 (03) : 1057 - 1066
  • [34] MicroNet: microaneurysm detection in retinal fundus images using convolutional neural network
    R Murugan
    Parthapratim Roy
    Soft Computing, 2022, 26 : 1057 - 1066
  • [35] Classification of Monkeypox Images Using LIME-Enabled Investigation of Deep Convolutional Neural Network
    Lakshmi, M.
    Das, Raja
    DIAGNOSTICS, 2023, 13 (09)
  • [36] Study on Brain Tumor Classification Through MRI Images Using a Deep Convolutional Neural Network
    Sharma, Kirti
    Khanna, Ketna
    Gambhir, Sapna
    Gambhir, Mohit
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2022, 12 (01)
  • [37] Glaucoma assessment from color fundus images using convolutional neural network
    Elangovan, Poonguzhali
    Nath, Malaya Kumar
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (02) : 955 - 971
  • [38] A Hybrid Convolutional Neural Network Model for Automatic Diabetic Retinopathy Classification From Fundus Images
    Ali, Ghulam
    Dastgir, Aqsa
    Iqbal, Muhammad Waseem
    Anwar, Muhammad
    Faheem, Muhammad
    IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2023, 11 : 341 - 350
  • [39] Detection of CSR from Blue Wave Fundus Autofluorescence Images using Deep Neural Network Based on Transfer Learning
    Nelson, Bino
    Khadir, Haris Pandiyapallil Abdul
    Odattil, Sheeba
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2023, 14 (03) : 277 - 284
  • [40] A Deep Neural Network for Cervical Cell Classification Based on Cytology Images
    Fang, Ming
    Lei, Xiujuan
    Liao, Bo
    Wu, Fang-Xiang
    IEEE ACCESS, 2022, 10 : 130968 - 130980