Laterality Classification of Fundus Images Using Interpretable Deep Neural Network

被引:19
|
作者
Jang, Yeonwoo [1 ]
Son, Jaemin [2 ]
Park, Kyu Hyung [3 ]
Park, Sang Jun [3 ]
Jung, Kyu-Hwan [2 ]
机构
[1] Univ Oxford, Dept Stat, Oxford, England
[2] VUNO Inc, 6F,507 Gangnam Daero, Seoul, South Korea
[3] Seoul Natl Univ, Bundang Hosp, Coll Med, Dept Ophthalmol, Seongnam, South Korea
基金
新加坡国家研究基金会;
关键词
Laterality classification; Fundus images; Deep neural network; Deep learning; Interpretability;
D O I
10.1007/s10278-018-0099-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In this paper, we aimed to understand and analyze the outputs of a convolutional neural network model that classifies the laterality of fundus images. Our model not only automatizes the classification process, which results in reducing the labors of clinicians, but also highlights the key regions in the image and evaluates the uncertainty for the decision with proper analytic tools. Our model was trained and tested with 25,911 fundus images (43.4% of macula-centered images and 28.3% each of superior and nasal retinal fundus images). Also, activation maps were generated to mark important regions in the image for the classification. Then, uncertainties were quantified to support explanations as to why certain images were incorrectly classified under the proposed model. Our model achieved a mean training accuracy of 99%, which is comparable to the performance of clinicians. Strong activations were detected at the location of optic disc and retinal blood vessels around the disc, which matches to the regions that clinicians attend when deciding the laterality. Uncertainty analysis discovered that misclassified images tend to accompany with high prediction uncertainties and are likely ungradable. We believe that visualization of informative regions and the estimation of uncertainty, along with presentation of the prediction result, would enhance the interpretability of neural network models in a way that clinicians can be benefitted from using the automatic classification system.
引用
收藏
页码:923 / 928
页数:6
相关论文
共 50 条
  • [1] Laterality Classification of Fundus Images Using Interpretable Deep Neural Network
    Yeonwoo Jang
    Jaemin Son
    Kyu Hyung Park
    Sang Jun Park
    Kyu-Hwan Jung
    Journal of Digital Imaging, 2018, 31 : 923 - 928
  • [2] Interpretable Retinal Disease Classification from OCT Images Using Deep Neural Network and Explainable AI
    Reza, Md Tanzim
    Ahmed, Farzad
    Sharar, Shihab
    Rasel, Annajiat Alim
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND INFORMATION TECHNOLOGY 2021 (ICECIT 2021), 2021,
  • [3] RobustRMC: Robustness Interpretable Deep Neural Network for Radio Modulation Classification
    Chen, Jinyin
    Liao, Danxin
    Zheng, Shilian
    Ye, Linhui
    Jia, Chenyu
    Zheng, Haibin
    Xiang, Sheng
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (04) : 1218 - 1240
  • [4] An enhanced swarm optimization-based deep neural network for diabetic retinopathy classification in fundus images
    A. Mary Dayana
    W. R. Sam Emmanuel
    Multimedia Tools and Applications, 2022, 81 : 20611 - 20642
  • [5] An enhanced swarm optimization-based deep neural network for diabetic retinopathy classification in fundus images
    Dayana, A. Mary
    Emmanuel, W. R. Sam
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (15) : 20611 - 20642
  • [6] Convolutional Neural Network-Based Classification of Multiple Retinal Diseases Using Fundus Images
    Aslam, Aqsa
    Farhan, Saima
    Khaliq, Momina Abdul
    Anjum, Fatima
    Afzaal, Ayesha
    Kanwal, Faria
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (03) : 2607 - 2622
  • [7] Deep Learning Neural Network for Unconventional Images Classification
    Xu, Wei
    Parvin, Hamid
    Izadparast, Hadi
    NEURAL PROCESSING LETTERS, 2020, 52 (01) : 169 - 185
  • [8] Deep Neural Network for Melanoma Classification in Dermoscopic Images
    Wang Jiahao
    Jin Xingguang
    Yuan, Wenjie
    Luo, Zhenyi
    Yu, Zhengyang
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 666 - 669
  • [9] Deep Learning Neural Network for Unconventional Images Classification
    Wei Xu
    Hamid Parvin
    Hadi Izadparast
    Neural Processing Letters, 2020, 52 : 169 - 185
  • [10] Multi-Classification of Brain Tumor Images Using Deep Neural Network
    Sultan, Hossam H.
    Salem, Nancy M.
    Al-Atabany, Walid
    IEEE ACCESS, 2019, 7 : 69215 - 69225