Exact Solution of the Classical Dimer Model on a Triangular Lattice: Monomer-Monomer Correlations

被引:3
作者
Basor, Estelle [1 ]
Bleher, Pavel [2 ]
机构
[1] Amer Inst Math, 600 East Brokaw Rd, San Jose, CA 95112 USA
[2] Indiana Univ Purdue Univ, Dept Math Sci, 402 N Blackford St, Indianapolis, IN 46202 USA
基金
美国国家科学基金会;
关键词
BLOCK TOEPLITZ MATRICES; ASYMPTOTIC-BEHAVIOR; DETERMINANTS; FORMULA; BORODIN;
D O I
10.1007/s00220-017-2985-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain an asymptotic formula, as n -> infinity, for the monomer-monomer correlation function K-2 (n) in the classical dimer model on a triangular lattice, with the horizontal and vertical weights w(h) = w(v) = 1 and the diagonal weight w(d) = t > 0, between two monomers at vertices q and r that are n spaces apart in adjacent rows. We find that t(c) = 1/2 is a critical value of t. We prove that in the subcritical case, 0 < t < 1/2, as n -> infinity, K-2 (n) = K-2 (infinity) [1 - e(-n/xi)/n (C-1 + C-2(-1)(n) + O(n(-1)))], with explicit formulae for K-2(infinity), xi, C-1, and C-2. In the supercritical case, 1/2 < t < 1, we prove that as n -> infinity, K-2 (n) = K-2(infinity)[1 - e(-n/xi)/n (C-1 cos(omega n + phi(1)) + C-2(-1)(n) cos(omega n + phi(2)) + C-3 + C-4(-1)(n) + O(n(-1))))], with explicit formulae for K-2(infinity), xi, omega, and C-1, C-2, C-3, C-4, phi(1), phi(2). The proof is based on an extension of the Borodin-Okounkov-Case-Geronimo formula to block Toeplitz determinants and on an asymptotic analysis of the Fredholm determinants in hand.
引用
收藏
页码:397 / 425
页数:29
相关论文
共 20 条
[1]  
[Anonymous], 2013, FRUSTRATED SPIN SYST
[2]   On a Toeplitz determinant identity of Borodin and Okounkov [J].
Basor, EL ;
Widom, H .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 37 (04) :397-401
[3]   Asymptotics of block toeplitz determinants and the classical dimer model [J].
Basor, Estelle L. ;
Ehrhardt, Torsten .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 274 (02) :427-455
[4]   A fredholm determinant formula for Toeplitz determinants [J].
Borodin, A ;
Okounkov, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 37 (04) :386-396
[5]   One more proof of the Borodin-Okounkov formula for Toeplitz determinants [J].
Böttcher, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 41 (01) :123-125
[6]  
Bottcher A., 1990, Analysis of Toeplitz Operators
[7]  
Bottcher A., 2006, SPRINGER MONOGRAPHS
[8]  
Deift P, 2014, MATH SCI R, V65, P93
[9]  
Ehrhardt T, 2000, OPER THEOR, V124, P217
[10]   Classical dimers on the triangular lattice [J].
Fendley, P ;
Moessner, R ;
Sondhi, SL .
PHYSICAL REVIEW B, 2002, 66 (21) :1-14