Fractional stochastic differential equation with discontinuous diffusion

被引:12
作者
Garzon, Johanna [1 ]
Lenon, Jorge A. [2 ]
Torres, Soledad [3 ]
机构
[1] Univ Nacl Colombia, Dept Matemat, Bogota, Colombia
[2] Cinvestav IPN, Dept Control Automat, Mexico City, DF, Mexico
[3] CIMFAV Univ Valparaiso, Fac Ingn, Castilla 123-V, Valparaiso 4059, Chile
关键词
Fractional Brownian motion; fractional calculus; pathwise differential equations; young integral; BROWNIAN-MOTION; RESPECT;
D O I
10.1080/07362994.2017.1358643
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study a class of stochastic differential equations driven by a fractional Brownian motion with H > 1/2 and a discontinuous coefficient in the diffusion. We prove existence and uniqueness for the solution of these equations. This is a first step to define a fractional version of the skew Brownian motion.
引用
收藏
页码:1113 / 1123
页数:11
相关论文
共 9 条
[1]   The wavelet-based synthesis for fractional Brownian motion - Proposed by F. Sellan and Y. Meyer: Remarks and fast implementation [J].
Abry, P ;
Sellan, F .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (04) :377-383
[2]   On hedging European options in geometric fractional Brownian motion market model [J].
Azmoodeh, Ehsan ;
Mishura, Yuliya ;
Valkeila, Esko .
STATISTICS & RISK MODELING, 2009, 27 (02) :129-143
[3]   Stochastic differential equations driven by fractional Brownian motion and Poisson point process [J].
Bai, Lihua ;
Ma, Jin .
BERNOULLI, 2015, 21 (01) :303-334
[4]   On the constructions of the skew Brownian motion [J].
Lejay, Antoine .
PROBABILITY SURVEYS, 2006, 3 :413-466
[5]   Weak solutions for stochastic differential equations with additive fractional noise [J].
Mishura, Y ;
Nualart, D .
STATISTICS & PROBABILITY LETTERS, 2004, 70 (04) :253-261
[6]   Random variables as pathwise integrals with respect to fractional Brownian motion [J].
Mishura, Yuliya ;
Shevchenko, Georgiy ;
Valkeila, Esko .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (06) :2353-2369
[7]  
Nakao S, 1972, Osaka J. Math., V9, P513
[8]  
Ouknine Y., 1988, Stochastics, V23, P149, DOI 10.1080/17442508808833487
[9]   Integration with respect to fractal functions and stochastic calculus. I [J].
Zahle, M .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 111 (03) :333-374