A LOWER BOUND FOR THE PRINCIPAL EIGENVALUE OF FULLY NONLINEAR ELLIPTIC OPERATORS

被引:0
作者
Blanc, Pablo [1 ]
机构
[1] Univ Buenos Aires, FCEyN, Dept Matemat, Buenos Aires, DF, Argentina
关键词
Principal eigenvalue; lower bounds; fully nonlinear elliptic PDEs; MAXIMUM PRINCIPLE; DIRICHLET PROBLEM; P-LAPLACIAN; INFINITY;
D O I
10.3934/cpaa.2020158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we present a new technique to obtain a lower bound for the principal Dirichlet eigenvalue of a fully nonlinear elliptic operator. We illustrate the construction of an appropriate radial function required to obtain the bound in several examples. In particular we use our results to prove that lim(p ->infinity) lambda(1,p) (Omega) = lambda(1,infinity) (Omega) = (pi/2R)(2) where R is the largest radius of a ball included in the domain Omega subset of R-n, and lambda(1,p) (Omega) and lambda(1,infinity) (Omega) are the principal eigenvalue for the homogeneous p-laplacian and the homogeneous infinity laplacian respectively.
引用
收藏
页码:3613 / 3623
页数:11
相关论文
共 15 条
[1]  
[Anonymous], 1992, Bull. Amer. Math. Soc.
[2]   THE PRINCIPAL EIGENVALUE AND MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC-OPERATORS IN GENERAL DOMAINS [J].
BERESTYCKI, H ;
NIRENBERG, L ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (01) :47-92
[3]   Generalizations and Properties of the Principal Eigenvalue of Elliptic Operators in Unbounded Domains [J].
Berestycki, Henri ;
Rossi, Luca .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (06) :1014-1065
[4]   Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators [J].
Birindelli, I. ;
Demengel, F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (05) :1089-1110
[5]   Eigenvalue and Dirichlet problem for fully-nonlinear operators in non-smooth domains [J].
Birindelli, I. ;
Demengel, F. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 352 (02) :822-835
[6]  
Birindelli I., 2004, Ann. Fac. Sci. Toulouse Math., V13, P261
[7]  
Birindelli I, 2006, ADV DIFFERENTIAL EQU, V11, P91
[8]   Nonlinear eigenvalues and bifurcation problems for Pucci's operators [J].
Busca, J ;
Esteban, MJ ;
Quaas, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (02) :187-206
[9]   Characterization of stadium-like domains via boundary value problems for the infinity Laplacian [J].
Crasta, Graziano ;
Fragala, Ilaria .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 133 :228-249
[10]   The ∞-eigenvalue problem [J].
Juutinen, P ;
Lindqvist, P ;
Manfredi, JJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 148 (02) :89-105