High Throughput Screening Tools for Thermoelectric Materials

被引:8
作者
Wong-Ng, W. [1 ]
Yan, Y. [2 ]
Otani, M. [1 ]
Martin, J. [1 ]
Talley, K. R. [3 ]
Barron, S. [1 ]
Carroll, D. L. [4 ]
Hewitt, C. [4 ]
Joress, H. [5 ]
Thomas, E. L. [6 ]
Green, M. L. [1 ]
Tang, X. F. [2 ]
机构
[1] NIST, Mat Sci Measurement Div, Gaithersburg, MD 20899 USA
[2] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[3] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA
[4] Wake Forest Univ, Ctr Nanotechnol, Winston Salem, NC 27105 USA
[5] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[6] Univ Dayton, Res Inst, Air Force Res Lab, Energy Technol & Mat Div, Dayton, OH 45469 USA
关键词
High throughput thermoelectric screening tools; applications of screening tools; thermoelectric bulk materials and single crystals; combinatorial films; COMPOSITION-SPREAD APPROACH; COMBINATORIAL; LIBRARIES; DEVICES; FILMS; MERIT;
D O I
10.1007/s11664-014-3519-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A suite of complementary high-throughput screening systems for combinatorial films was developed at National Institute of Standards and Technology to facilitate the search for efficient thermoelectric materials. These custom-designed capabilities include a facility for combinatorial thin film synthesis and a suite of tools for screening the Seebeck coefficient, electrical resistance (electrical resistivity), and thermal effusivity (thermal conductivity) of these films. The Seebeck coefficient and resistance are measured via custom-built automated apparatus at both ambient and high temperatures. Thermal effusivity is measured using a frequency domain thermoreflectance technique. This paper will discuss applications using these tools on representative thermoelectric materials, including combinatorial composition-spread films, conventional films, single crystals, and ribbons.
引用
收藏
页码:1688 / 1696
页数:9
相关论文
共 35 条
[1]  
BLOCK S, 1987, ADV CERAM MATER, V2, P601
[2]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[3]   Continuous compositional-spread technique based on pulsed-laser deposition and applied to the growth of epitaxial films [J].
Christen, HM ;
Silliman, SD ;
Harshavardhan, KS .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (06) :2673-2678
[4]   Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach [J].
Fukumura, T ;
Ohtani, M ;
Kawasaki, M ;
Okimoto, Y ;
Kageyama, T ;
Koida, T ;
Hasegawa, T ;
Tokura, Y ;
Koinuma, H .
APPLIED PHYSICS LETTERS, 2000, 77 (21) :3426-3428
[5]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232
[6]   Magneto-Seebeck coefficient of a bismuth microwire array in a magnetic field [J].
Hasegawa, Y ;
Ishikawa, Y ;
Komine, T ;
Huber, TE ;
Suzuki, A ;
Morita, H ;
Shirai, H .
APPLIED PHYSICS LETTERS, 2004, 85 (06) :917-919
[7]   Multilayered Carbon Nanotube/Polymer Composite Based Thermoelectric Fabrics [J].
Hewitt, Corey A. ;
Kaiser, Alan B. ;
Roth, Siegmar ;
Craps, Matt ;
Czerw, Richard ;
Carroll, David L. .
NANO LETTERS, 2012, 12 (03) :1307-1310
[8]   Cubic AgPbmSbTe2+m:: Bulk thermoelectric materials with high figure of merit [J].
Hsu, KF ;
Loo, S ;
Guo, F ;
Chen, W ;
Dyck, JS ;
Uher, C ;
Hogan, T ;
Polychroniadis, EK ;
Kanatzidis, MG .
SCIENCE, 2004, 303 (5659) :818-821
[9]  
HULL R, 1999, PROPERTIES CRYSTALLI, P165
[10]  
Kittel C., 1956, SOLID STATE PHYS, P296