An Efficient Hybrid Numerical Scheme for Nonlinear Multiterm Caputo Time and Riesz Space Fractional-Order Diffusion Equations with Delay

被引:9
作者
Omran, A. K. [1 ,2 ]
Zaky, M. A. [3 ,4 ,5 ]
Hendy, A. S. [1 ,5 ]
Pimenov, V. G. [1 ,6 ]
机构
[1] Ural Fed Univ, Inst Nat Sci & Math, Dept Computat Math & Comp Sci, 19 Mira St, Ekaterinburg 620002, Russia
[2] Al Azhar Univ, Fac Sci, Dept Math, Assiut 71524, Egypt
[3] Nazarbayev Univ, Dept Math, Nur Sultan, Kazakhstan
[4] Natl Res Ctr, Phys Div, Dept Appl Math, Cairo 12622, Egypt
[5] Benha Univ, Dept Math, Fac Sci, Banha 13511, Egypt
[6] Russian Acad Sci, Ural Branch, Inst Math & Mech, 16 Kovalevskoy St, Ekaterinburg 620000, Russia
关键词
BOUNDARY-VALUE-PROBLEMS; SPECTRAL METHOD; DIFFERENCE SCHEME; CONVERGENCE; STABILITY; SOLVERS; FLUID; FLOW;
D O I
10.1155/2021/5922853
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct and analyze a linearized finite difference/Galerkin-Legendre spectral scheme for the nonlinear multiterm Caputo time fractional-order reaction-diffusion equation with time delay and Riesz space fractional derivatives. The temporal fractional orders in the considered model are taken as (0 < beta(0) < beta(1) < beta(2)< ...< beta(m) < 1). The problem is first approximated by the L1 difference method on the temporal direction, and then, the Galerkin-Legendre spectral method is applied on the spatial discretization. Armed by an appropriate form of discrete fractional Gronwall inequalities, the stability and convergence of the fully discrete scheme are investigated by discrete energy estimates. We show that the proposed method is stable and has a convergent order of 2 - beta(m) in time and an exponential rate of convergence in space. We finally provide some numerical experiments to show the efficacy of the theoretical results.
引用
收藏
页数:13
相关论文
共 50 条
[1]   A class of moving Kriging interpolation-based DQ methods to simulate multi-dimensional space Galilei invariant fractional advection-diffusion equation [J].
Abbaszadeh, Mostafa ;
Dehghan, Mehdi .
NUMERICAL ALGORITHMS, 2022, 90 (01) :271-299
[2]   The local meshless collocation method for solving 2D fractional Klein-Kramers dynamics equation on irregular domains [J].
Abbaszadeh, Mostafa ;
Pourbashash, Hossein ;
Oshagh, Mahmood Khaksar-e .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2022, 32 (01) :41-61
[3]   Fourth-order alternating direction implicit difference scheme to simulate the space-time Riesz tempered fractional diffusion equation [J].
Abbaszadeh, Mostafa ;
Dehghan, Mehdi .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (11) :2137-2155
[4]   Computational aspects of fractional Romanovski-Bessel functions [J].
Abo-Gabal, Howayda ;
Zaky, Mahmoud A. ;
Hendy, Ahmed S. ;
Doha, Eid H. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (04)
[5]   A priori estimates for solutions of boundary value problems for fractional-order equations [J].
Alikhanov, A. A. .
DIFFERENTIAL EQUATIONS, 2010, 46 (05) :660-666
[6]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[7]   A Pseudo-Spectral Scheme for Systems of Two-Point Boundary Value Problems with Left and Right Sided Fractional Derivatives and Related Integral Equations [J].
Ameen, I. G. ;
Elkot, N. A. ;
Zaky, M. A. ;
Hendy, A. S. ;
Doha, E. H. .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 128 (01) :21-41
[8]   Singularity preserving spectral collocation method for nonlinear systems of fractional differential equations with the right-sided Caputo fractional derivative [J].
Ameen, Ibrahem G. ;
Zaky, Mahmoud A. ;
Doha, Eid H. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 392
[9]  
[Anonymous], 1998, FRACTIONAL DIFFERENT
[10]  
Benchohra M, 2010, Commun Appl Analy, V14, P213