Correlating Electrochemical Kinetic Parameters of Single LiNi1/3Mn1/3Co1/3O2 Particles with the Performance of Corresponding Porous Electrodes

被引:18
作者
Li, Xu [1 ,2 ]
Li, Na [1 ,2 ]
Zhang, Kai-Lun [1 ,2 ]
Huang, Jun [3 ]
Jiao, Shuqiang [1 ,4 ]
Chen, Hao-Sen [1 ,2 ]
Song, Wei-Li [1 ,2 ]
机构
[1] Beijing Inst Technol, Inst Adv Struct Technol, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab Lightweight Multifunct Composite, Beijing 100081, Peoples R China
[3] Ulm Univ, Inst Theoret Chem, D-89069 Ulm, Germany
[4] Univ Sci & Technol Beijing, State Key Lab Adv Met, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Electrochemical Impedance Spectroscopy; LiNi1/3Mn1/3Co1/3O2; Lithium-Ion Batteries; Single Particle Measurement; LITHIUM; IMPEDANCE; CATHODES;
D O I
10.1002/anie.202205394
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Characterizing microscale single particles directly is requested for dissecting the performance-limiting factors at the electrode scale. In this work, we build a single-particle electrochemical setup and develop a physics-based model for extracting the solid-phase diffusion coefficient (D-s) and exchange current density (i(0)) from electrochemical impedance measurements. We find that the carbon coating on the LiNi1/3Mn1/3Co1/3O2 surface enhances i(0). In addition, D-s and i(0) decay irreversibly by approximate to 25% and approximate to 10%, respectively, when the cutoff charge voltage increases from 4.3 V to 4.4 V. Moreover, we correlate intrinsic parameters of single particles with the performance of porous electrodes. Porous electrodes assembled with active particles with higher i(0) values deliver a greater capacity and faster capacity fade. The methods developed in this combined experimental and theoretical work can be useful in correlating the single-particle scale and porous-electrode scale for other similar systems.
引用
收藏
页数:11
相关论文
共 33 条
[1]   The Role of Intragranular Nanopores in Capacity Fade of Nickel-Rich Layered Li(Ni1-x-yCOxMny)O2 Cathode Materials [J].
Ahmed, Shamail ;
Pokle, Anuj ;
Schweidler, Simon ;
Beyer, Andreas ;
Bianchini, Matteo ;
Walther, Felix ;
Mazilkin, Andrey ;
Hartmann, Pascal ;
Brezesinski, Torsten ;
Janek, Juergen ;
Volz, Kerstin .
ACS NANO, 2019, 13 (09) :10694-10704
[2]  
[Anonymous], 2013, ANGEW CHEM, V125, P2598
[3]  
[Anonymous], 2020, ANGEW CHEM, V132, P112
[4]   Charge transfer kinetics at the solid-solid interface in porous electrodes [J].
Bai, Peng ;
Bazant, Martin Z. .
NATURE COMMUNICATIONS, 2014, 5
[5]   Charge Transport in Single NCM Cathode Active Material Particles for Lithium-Ion Batteries Studied under Well-Defined Contact Conditions [J].
Burkhardt, Simon ;
Friedrich, Markus S. ;
Eckhardt, Janis K. ;
Wagner, Amalia C. ;
Bohn, Nicole ;
Binder, Joachim R. ;
Chen, Limei ;
Elm, Matthias T. ;
Janek, Juergen ;
Klar, Peter J. .
ACS ENERGY LETTERS, 2019, 4 (09) :2117-2123
[6]   Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries [J].
Chae, Sujong ;
Choi, Seong-Hyeon ;
Kim, Namhyung ;
Sung, Jaekyung ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) :110-135
[7]   Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries [J].
Choi, Woosung ;
Shin, Heon-Cheol ;
Kim, Ji Man ;
Choi, Jae-Young ;
Yoon, Won-Sub .
JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2020, 11 (01) :1-13
[8]   Persistent and partially mobile oxygen vacancies in Li-rich layered oxides [J].
Csernica, Peter M. ;
Kalirai, Samanbir S. ;
Gent, William E. ;
Lim, Kipil ;
Yu, Young-Sang ;
Liu, Yunzhi ;
Ahn, Sung-Jin ;
Kaeli, Emma ;
Xu, Xin ;
Stone, Kevin H. ;
Marshall, Ann F. ;
Sinclair, Robert ;
Shapiro, David A. ;
Toney, Michael F. ;
Chueh, William C. .
NATURE ENERGY, 2021, 6 (06) :642-652
[9]   Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode Part II. Disordered carbon [J].
Dokko, K ;
Fujita, Y ;
Mohamedi, M ;
Umeda, M ;
Uchida, I ;
Selman, JR .
ELECTROCHIMICA ACTA, 2001, 47 (06) :933-938