Global stability and optimal control analysis of a foot-and-mouth disease model with vaccine failure and environmental transmission

被引:18
作者
Gashirai, Tinashe B. [1 ]
Musekwa-Hove, Senelani D. [1 ]
Lolika, Paride O. [2 ,3 ]
Mushayabasa, Steady [3 ]
机构
[1] Natl Univ Sci & Technol, Dept Appl Math, POB 939 Ascot, Bulawayo, Zimbabwe
[2] Univ Juba, Dept Math, POB 82 Juba, Cent Equatoria, South Sudan
[3] Univ Zimbabwe, Dept Math, POB MP 167, Harare, Zimbabwe
关键词
Foot-and-Mouth disease; Mathematical model; Vaccine failure; Optimal control theory; VIRUS; DYNAMICS; EPIDEMICS; NETWORK;
D O I
10.1016/j.chaos.2019.109568
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A mathematical model for the transmission dynamics of foot-and-mouth disease that incorporates direct and indirect disease transmission pathways as well as vaccine failure and culling clinically infected animals is developed, analyzed and simulated. The basic reproduction number of the model is determined and qualitatively used to investigate the global stability of the model steady states. Meanwhile, optimal control theory is applied to the proposed model to identify optimal vaccination and culling strategies that can lead to effective control of the disease. Using data from literature, illustrations were performed to support analytical findings. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 49 条
[1]   A predictive spatio-temporal model for bovine Babesiosis epidemic transmission [J].
Abdelheq, Mezouaghi ;
Belhamiti, Omar ;
Bouzid, Leila ;
Trejos, Deccy Y. ;
Valverde, Jose C. .
JOURNAL OF THEORETICAL BIOLOGY, 2019, 480 :192-204
[2]   A time-delayed epidemic model for Ebola disease transmission [J].
Al-Darabsah, Isam ;
Yuan, Yuan .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 290 :307-325
[3]   Numerical methods for a nonlinear reaction-diffusion system modelling a batch culture of biofilm [J].
Balsa-Canto, Eva ;
Lopez-Nunez, Alejandro ;
Vazquez, Carlos .
APPLIED MATHEMATICAL MODELLING, 2017, 41 :164-179
[4]   When individual behaviour matters: homogeneous and network models in epidemiology [J].
Bansal, Shweta ;
Grenfell, Bryan T. ;
Meyers, Lauren Ancel .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2007, 4 (16) :879-891
[5]  
Bernoulli D, 1766, ESSAI NOUVELLE ANAL, V1, P1
[6]   Understanding foot-and-mouth disease virus transmission biology: identification of the indicators of infectiousness [J].
Chase-Topping, Margo E. ;
Handel, Ian ;
Bankowski, Bartlomiej M. ;
Juleff, Nicholas D. ;
Gibson, Debi ;
Cox, Sarah J. ;
Windsor, Miriam A. ;
Reid, Elizabeth ;
Doel, Claudia ;
Howey, Richard ;
Barnett, Paul V. ;
Woolhouse, Mark E. J. ;
Charleston, Bryan .
VETERINARY RESEARCH, 2013, 44
[7]   Vaccination of cattle only is sufficient to stop FMDV transmission in mixed populations of sheep and cattle [J].
De Rueda, C. Bravo ;
Dekker, A. ;
Eble, P. L. ;
De Jong, M. C. M. .
EPIDEMIOLOGY AND INFECTION, 2015, 143 (11) :2279-2286
[8]   Quantification of transmission of foot-and-mouth disease virus caused by an environment contaminated with secretions and excretions from infected calves [J].
de Rueda, Carla Bravo ;
de Jong, Mart C. M. ;
Eble, Phaedra L. ;
Dekker, Aldo .
VETERINARY RESEARCH, 2015, 46
[9]   Modelling the initial spread of foot-and-mouth disease through animal movements [J].
Green, D. M. ;
Kiss, I. Z. ;
Kao, R. R. .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2006, 273 (1602) :2729-2735
[10]   Pattern Dynamics of an SIS Epidemic Model with Nonlocal Delay [J].
Guo, Zun-Guang ;
Song, Li-Peng ;
Sun, Gui-Quan ;
Li, Can ;
Jin, Zhen .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (02)