Relatively prime polynomials and nonsingular Hankel matrices over finite fields

被引:14
作者
Garcia-Armas, Mario [1 ]
Ghorpade, Sudhir R. [2 ]
Ram, Samrith [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
Finite field; Relatively prime polynomials; Toeplitz matrix; Hankel matrix; Bezoutian;
D O I
10.1016/j.jcta.2010.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The probability for two monic polynomials of a positive degree n with coefficients in the finite field F(q) to be relatively prime turns out to be identical with the probability for an n x n Hankel matrix over F(q) to be nonsingular. Motivated by this, we give an explicit map from pairs of coprime polynomials to nonsingular Hankel matrices that explains this connection. A basic tool used here is the classical notion of Bezoutian of two polynomials. Moreover, we give simpler and direct proofs of the general formulae for the number of m-tuples of relatively prime polynomials over F(q) of given degrees and for the number of n x n Hankel matrices over F(q) of a given rank. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:819 / 828
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 1981, The Art of Computer Programming
[2]  
Benjamin A. T., 2007, MATH MAG, P196
[3]   A pentagonal number sieve [J].
Corteel, S ;
Savage, CD ;
Wilf, HS ;
Zeilberger, D .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1998, 82 (02) :186-192
[4]  
Daykin D., 1960, J REINE ANGEW MATH, V203, P47
[5]   Degree distribution of the greatest common divisor of polynomials over Fq [J].
Gao, Zhicheng ;
Panario, Daniel .
RANDOM STRUCTURES & ALGORITHMS, 2006, 29 (01) :26-37
[6]  
GHORPADE SR, 2010, BLOCK COMPANION SING
[7]   BEZOUTIANS [J].
HELMKE, U ;
FUHRMANN, PA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 122 :1039-1097
[8]   Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields [J].
Hou, Xiang-dong ;
Mullen, Gary L. .
FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (03) :304-331
[9]  
KALTOFEN ERICH, 1996, P 1996 INT S SYMB AL, P241, DOI 10.1145/236869.237081
[10]  
KNUTH D, 1969, ART COMPUTER PROGRAM, V2, P2