Effect of fiber orientation on Liquid-Gas flow in the gas diffusion layer of a polymer electrolyte membrane fuel cell

被引:12
作者
Lee, Seung-Hun [1 ]
Nam, Jin Hyun [2 ]
Kim, Charn-Jung [3 ,4 ]
Kim, Hyung Min [5 ]
机构
[1] Seoul Natl Univ, Dept Mech & Aerosp Engn, Seoul 08826, South Korea
[2] Daegu Univ, Sch Automot Ind & Mech Engn, Gyongsan 38453, South Korea
[3] Seoul Natl Univ, Grad Sch Engn Practice, Seoul 08826, South Korea
[4] Seoul Natl Univ, Dept Mech Engn, Seoul 08826, South Korea
[5] Kyonggi Univ, Div Mech Syst Engn, 154-42 Gwanggyosan Ro, Suwon 16227, Gyeonggi, South Korea
基金
新加坡国家研究基金会;
关键词
Gas diffusion layer; Lattice Boltzmann method; Liquid water transport; Fiber orientation; Polymer electrolyte membrane fuel cell; LATTICE BOLTZMANN SIMULATIONS; WATER TRANSPORT; MICROSTRUCTURE RECONSTRUCTION; PTFE DISTRIBUTION; POROUS-MEDIA; PERMEABILITY; CHANNEL; IMPACT; GDL; BEHAVIOR;
D O I
10.1016/j.ijhydene.2021.07.205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the lattice Boltzmann method was used to simulate the three-dimensional intrusion process of liquid water in the gas diffusion layer (GDL) of a polymer electrolyte membrane fuel cell (PEMFC). The GDL was reconstructed by the stochastic method and used to investigate fiber orientation's influence on liquid water transport in the GDL of a PEMFC. The fiber orientation can be described by the angle between a single fiber and the in-plane direction; three different samples were simulated for three different fiber orientation ranges. The simulated permeability correlated well with the anisotropic characteristics of reconstructed carbon papers. It was concluded that the fiber orientation had a significant effect on the liquid invasion pattern in the GDL by changing the pore shape and distribution of the GDL. The results indicated that the stochastically reconstructed GDL, taking into account the fiber orientation, better demonstrates the mass transport properties of the GDL. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:33957 / 33968
页数:12
相关论文
共 61 条
[1]   Heterogeneous porosity distributions of polymer electrolyte membrane fuel cell gas diffusion layer materials with rib-channel compression [J].
Banerjee, R. ;
Hinebaugh, J. ;
Liu, H. ;
Yip, R. ;
Ge, N. ;
Bazylak, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (33) :14885-14896
[2]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[3]   LIQUID WATER DYNAMIC BEHAVIORS IN THE GDL AND GC OF PEMFCS USING LATTICE BOLTZMANN METHOD [J].
Chen, Li ;
Luan, Hui-Bao ;
Tao, Wen-Quan .
FRONTIERS IN HEAT AND MASS TRANSFER, 2010, 1 (02)
[4]   Numerical investigation of liquid water transport and distribution in porous gas diffusion layer of a proton exchange membrane fuel cell using lattice Boltzmann method [J].
Chen, Li ;
Luan, Hui-Bao ;
He, Ya-Ling ;
Tao, Wen-Quan .
RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2012, 48 (07) :712-726
[5]   Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields [J].
Chen, Li ;
Luan, Hui-Bao ;
He, Ya-Ling ;
Tao, Wen-Quan .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 51 :132-144
[6]   Impact of PTFE content and distribution on liquid-gas flow in PEMFC carbon paper gas distribution layer: 3D lattice Boltzmann simulations [J].
Chen, Wang ;
Jiang, Fangming .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (20) :8550-8562
[7]   Feasibility of periodic surface models to develop gas diffusion layers: A gas permeability study [J].
Didari, Sima ;
Harris, Tequila A. L. ;
Huang, Wei ;
Tessier, Sean M. ;
Wang, Yan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (19) :14427-14438
[8]   Operando Properties of Gas Diffusion Layers: Saturation and Liquid Permeability [J].
Eller, Jens ;
Roth, Jorg ;
Marone, Federica ;
Stampanoni, Marco ;
Buchi, Felix N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) :F115-F126
[9]   Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells [J].
Fadzillah, D. M. ;
Rosli, M. I. ;
Talib, M. Z. M. ;
Kamarudin, S. K. ;
Daud, W. R. W. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 77 :1001-1009
[10]   On the relative influence of convection in serpentine flow fields of PEM fuel cells [J].
Feser, J. P. ;
Prasad, A. K. ;
Advani, S. G. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :404-412