Symmetric polynomials on

被引:0
|
作者
Vasylyshyn, Taras [1 ]
机构
[1] Vasyl Stefanyk Precarpathian Natl Univ, 57 Shevchenka Str, UA-76018 Ivano Frankivsk, Ukraine
关键词
Polynomial; Symmetric polynomial; Block-symmetric polynomial; Algebraic basis; ANALYTIC-FUNCTIONS; ALGEBRAS; SPECTRA; CONVOLUTION;
D O I
10.1007/s40879-018-0268-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe an algebraic basis of the algebra of symmetric continuous polynomials on the nth Cartesian power of the complex Banach space , where 1 <= p<+infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\leqslant p .
引用
收藏
页码:164 / 178
页数:15
相关论文
共 50 条
  • [41] Sums of two polynomials with each having real zeros symmetric with the other
    Seon-Hong Kim
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2002, 112 : 283 - 288
  • [42] ON SOME NONCOMMUTATIVE SYMMETRIC FUNCTIONS ANALOGOUS TO HALL-LITTLEWOOD AND MACDONALD POLYNOMIALS
    Novelli, Jean-Christophe
    Tevlin, Lenny
    Thibon, Jean-Yves
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (04) : 779 - 801
  • [43] Cubic symmetric polynomials yielding variations of the Erdős–Ginzburg–Ziv theorem
    Arie Bialostocki
    Tran Dinh Luong
    Acta Mathematica Hungarica, 2014, 142 : 152 - 166
  • [44] CUBIC SYMMETRIC POLYNOMIALS YIELDING VARIATIONS OF THE ERDOS-GINZBURG-ZIV THEOREM
    Bialostocki, A.
    Luong, T. D.
    ACTA MATHEMATICA HUNGARICA, 2014, 142 (01) : 152 - 166
  • [45] Supersymmetric Polynomials on the Space of Absolutely Convergent Series
    Jawad, Farah
    Zagorodnyuk, Andriy
    SYMMETRY-BASEL, 2019, 11 (09):
  • [46] Turan's inequality, nonnegative linearization and amenability properties for associated symmetric Pollaczek polynomials
    Kahler, Stefan
    JOURNAL OF APPROXIMATION THEORY, 2021, 268
  • [47] ALGEBRAIC BASIS OF THE ALGEBRA OF BLOCK-SYMMETRIC POLYNOMIALS ON l1 ⊕ l∞
    Kravtsiv, V. V.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2019, 11 (01) : 89 - 95
  • [48] Quantum Weyl symmetric polynomials and the center of quantum group Uq (sl4)
    Wu JingYan
    Wei JunChao
    Li LiBin
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (01) : 55 - 64
  • [49] GROUP-INVARIANT SEPARATING POLYNOMIALS ON A BANACH SPACE
    Falco, Javier
    Garcia, Domingo
    Jung, Mingu
    Maestre, Manuel
    PUBLICACIONS MATEMATIQUES, 2022, 66 (01) : 207 - 233
  • [50] Tauberian polynomials
    Acosta, Maria D.
    Galindo, Pablo
    Moraes, Luiza A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) : 880 - 889