Symmetric polynomials on

被引:0
|
作者
Vasylyshyn, Taras [1 ]
机构
[1] Vasyl Stefanyk Precarpathian Natl Univ, 57 Shevchenka Str, UA-76018 Ivano Frankivsk, Ukraine
关键词
Polynomial; Symmetric polynomial; Block-symmetric polynomial; Algebraic basis; ANALYTIC-FUNCTIONS; ALGEBRAS; SPECTRA; CONVOLUTION;
D O I
10.1007/s40879-018-0268-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe an algebraic basis of the algebra of symmetric continuous polynomials on the nth Cartesian power of the complex Banach space , where 1 <= p<+infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\leqslant p .
引用
收藏
页码:164 / 178
页数:15
相关论文
共 50 条
  • [31] Symmetric polynomials, generalized Jacobi-Trudi identities and τ-fuctions
    Harnad, J.
    Lee, Eunghyun
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (09)
  • [32] Symmetric polynomials in the free metabelian associative algebra of rank 2
    Findik, Sehmus
    TURKISH JOURNAL OF MATHEMATICS, 2022,
  • [33] Exploiting Features of Symmetric Polynomials for Improved Comb Filter Design
    Jovanovic Dolecek, Gordana
    Dolecek, Lara
    2016 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2016, : 26 - 29
  • [34] Transition matrices for symmetric and quasisymmetric Hall-Littlewood polynomials
    Loehr, Nicholas A.
    Serrano, Luis G.
    Warrington, Gregory S.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (08) : 1996 - 2019
  • [35] Group-symmetric holomorphic functions on a Banach space
    Aron, Richard
    Galindo, Pablo
    Pinasco, Damian
    Zalduendo, Ignacio
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 : 779 - 796
  • [36] SYMMETRIC FUNCTIONS ON SPACES lp(Rn) AND lp(Cn)
    Vasylyshyn, T. V.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (01) : 5 - 16
  • [37] D-NICE SYMMETRIC POLYNOMIALS WITH FOUR ROOTS OVER INTEGRAL DOMAINS D OF ANY CHARACTERISTIC
    Groves, Jonathan
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2007, 2 : 208 - 225
  • [38] Representation theoretic realization of non-symmetric Macdonald polynomials at infinity
    Feigin, Evgeny
    Kato, Syu
    Makedonskyi, Ievgen
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 764 : 181 - 216
  • [39] Infinite families of 3-designs from special symmetric polynomials
    Xu, Guangkui
    Cao, Xiwang
    Luo, Gaojun
    Wu, Huawei
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, : 4487 - 4509
  • [40] Synnatzschke's theorem for polynomials
    Boyd, Christopher
    Ryan, Raymond A.
    Snigireva, Nina
    POSITIVITY, 2021, 25 (01) : 229 - 242