Complex Korteweg-de Vries equation and nonlinear dust-acoustic waves in a magnetoplasma with a pair of trapped ions

被引:17
|
作者
Misra, A. P. [1 ]
机构
[1] Visva Bharati Univ, Dept Math, Siksha Bhavana, Santini Ketan 731235, W Bengal, India
关键词
Solitary wave; Magnetized plasma; Complex KdV equation; Trapped ion; SOLITARY WAVES; PLASMA;
D O I
10.1016/j.amc.2015.01.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlinear propagation of dust-acoustic (DA) waves in a magnetized dusty plasma with a pair of trapped ions is investigated. Starting from a set of hydrodynamic equations for dust fluids as well as kinetic Vlasov equations for ions, and applying the reductive perturbation technique, a Korteweg-de Vries (KdV)-like equation with a complex coefficient of nonlinearity is derived, which governs the evolution of small-amplitude DA waves in plasmas. The complex coefficient arises due to vortex-like distributions of both positive and negative ions. An analytical as well as numerical solution of the KdV equation are obtained and analyzed with the effects of external magnetic field, the dust pressure as well as different mass and temperatures of ions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:368 / 374
页数:7
相关论文
共 50 条
  • [21] Depression and elevation tsunami waves in the framework of the Korteweg-de Vries equation
    Grimshaw, R.
    Yuan, C.
    NATURAL HAZARDS, 2016, 84 : S493 - S511
  • [22] Singular solitons interaction of dust ion acoustic waves in the framework of Korteweg de Vries and Modified Korteweg-de Vries equations with (r,q) distributed electrons
    Ghosh, Uday Narayan
    CONTRIBUTIONS TO PLASMA PHYSICS, 2022, 62 (08)
  • [23] Few-cycle optical rogue waves: Complex modified Korteweg-de Vries equation
    He, Jingsong
    Wang, Lihong
    Li, Linjing
    Porsezian, K.
    Erdelyi, R.
    PHYSICAL REVIEW E, 2014, 89 (06):
  • [24] Effect of Dust Ion Collision on Dust Ion Acoustic Solitary Waves for Nonextensive Plasmas in the Framework of Damped Korteweg-de Vries-Burgers Equation
    Paul, Niranjan
    Mondal, Kajal Kumar
    Chatterjee, Prasanta
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2019, 74 (10): : 861 - 867
  • [25] (3+1)-dimensional cylindrical Korteweg-de Vries equation for nonextensive dust acoustic waves: Symbolic computation and exact solutions
    Guo, Shimin
    Wang, Hongli
    Mei, Liquan
    PHYSICS OF PLASMAS, 2012, 19 (06)
  • [26] Nonlinear Korteweg-de Vries-Burger equation for ion acoustic shock waves in a weakly relativistic electron-positron-ion plasma with thermal ions
    Saeed, R.
    Shah, Asif
    PHYSICS OF PLASMAS, 2010, 17 (03)
  • [27] New variational characterization of periodic waves in the fractional Korteweg-de Vries equation
    Natali, Fabio
    Le, Uyen
    Pelinovsky, Dmitry E.
    NONLINEARITY, 2020, 33 (04) : 1956 - 1986
  • [28] Weakly nonlinear waves over the bottom disturbed topography: Korteweg-de Vries equation with variable coefficients
    Cheng, Sixue
    Liu, Haijiang
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2023, 98 : 238 - 246
  • [29] Chaos in the perturbed Korteweg-de Vries equation with nonlinear terms of higher order
    Pan Wei-Zhen
    Song Xiang-Jiong
    Yu Jun
    CHINESE PHYSICS B, 2010, 19 (03)
  • [30] NONLINEAR WAVES IN A STENOSED ELASTIC TUBE FILLED WITH VISCOUS FLUID: FORCED PERTURBED KORTEWEG-DE VRIES EQUATION
    Gaik, Tay Kim
    Demiray, Hilmi
    Tiong, Ong Chee
    VIBRATION PROBLEMS, ICOVP-2007, 2008, 126 : 157 - +