The Existence and Uniqueness of Positive Solutions for Integral Boundary Value Problems
被引:0
|
作者:
Mao, Jinxiu
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
Mao, Jinxiu
[1
]
Zhao, Zengqin
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
Zhao, Zengqin
[1
]
Xu, Naiwei
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Water Conservat Profess Inst Fdn Dept, Rizhao, Shandong, Peoples R ChinaQufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
Xu, Naiwei
[2
]
机构:
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Shandong Water Conservat Profess Inst Fdn Dept, Rizhao, Shandong, Peoples R China
Integral boundary value problem;
positive solution;
lower and upper solution;
maximal principle;
SUFFICIENT CONDITION;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
This paper investigates the existence and uniqueness of C[0, 1] positive solutions for a second order integral boundary value problem. We mainly use the method of lower and upper solutions and the maximal principle. Our nonlinearity f (t, u) may be singular at u = 0, t = 0, 1.