Sufficient conditions for a real polynomial to be a sum of squares

被引:13
作者
Lasserre, Jean B.
机构
[1] CNRS, LAAS, F-31077 Toulouse, France
[2] LAAS, Inst Math, F-31077 Toulouse, France
关键词
real algebraic geometry; positive polynomials; sum of squares;
D O I
10.1007/s00013-007-2251-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide explicit sufficient conditions for a polynomial f to be a sum of squares (s.o.s.), linear in the coefficients of f. All conditions are simple and provide an explicit description of a convex polyhedral subcone of the cone of s.o.s. polynomials of degree at most 2d. We also provide a simple condition to ensure that f is s.o.s., possibly after adding a constant.
引用
收藏
页码:390 / 398
页数:9
相关论文
共 9 条
[1]  
[Anonymous], 2001, LECT MODERN CONVEX O, DOI 10.1137/1.9780898718829.ch6
[2]  
HELTON JW, 2004, LINEAR MATRIX INEQUA
[3]   A sum of squares approximation of nonnegative polynomials [J].
Lasserre, JB .
SIAM JOURNAL ON OPTIMIZATION, 2006, 16 (03) :751-765
[4]   Global optimization with polynomials and the problem of moments [J].
Lasserre, JB .
SIAM JOURNAL ON OPTIMIZATION, 2001, 11 (03) :796-817
[5]  
LASSERRE JB, 2006, CONDITIONS REAL POLY
[6]   SOS approximations of nonnegative polynomials via simple high degree perturbations [J].
Lasserre, Jean B. ;
Netzer, Tim .
MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (01) :99-112
[7]   The Lax conjecture is true [J].
Lewis, AS ;
Parrilo, PA ;
Ramana, MV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (09) :2495-2499
[8]   Semidefinite programming relaxations for semialgebraic problems [J].
Parrilo, PA .
MATHEMATICAL PROGRAMMING, 2003, 96 (02) :293-320
[9]   Optimization of polynomials on compact semialgebraic sets [J].
Schweighofer, M .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (03) :805-825