Broadband optical transparency in plasmonic nanocomposite polymer films via exciton-plasmon energy transfer

被引:3
作者
Dhama, R. [1 ,2 ]
Rashed, A. R. [3 ,4 ]
Caligiuri, V. [1 ,2 ]
El Kabbash, M. [3 ]
Strangi, G. [1 ,2 ,3 ]
De Luca, A. [1 ,2 ]
机构
[1] Univ Calabria, Dept Phys, I-87036 Arcavacata Di Rende, Italy
[2] Univ Calabria, CNR Nanotec, I-87036 Arcavacata Di Rende, Italy
[3] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA
[4] Bilkent Univ, Nanotechnol Res Ctr, TR-06800 Ankara, Turkey
来源
OPTICS EXPRESS | 2016年 / 24卷 / 13期
关键词
QUANTUM-DOT; METAMATERIALS; GOLD; NANOPARTICLES; NANOCRYSTALS; SCALE; ATOM;
D O I
10.1364/OE.24.014632
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Inherent absorptive losses affect the performance of all plasmonic devices, limiting their fascinating applications in the visible range. Here, we report on the enhanced optical transparency obtained as a result of the broadband mitigation of optical losses in nanocomposite polymeric films, embedding core-shell quantum dots (CdSe@ZnS QDs) and gold nanoparticles (Au-NPs). Exciton-plasmon coupling enables non-radiative energy transfer processes from QDs to metal NPs, resulting in gain induced transparency of the hybrid flexible systems. Experimental evidences, such as fluorescence quenching and modifications of fluorescence lifetimes confirm the presence of this strong coupling between plexcitonic elements. Measures performed by means of an ultra-fast broadband pump-probe setup demonstrate loss compensation of gold NPs dispersed in plastic network in presence of gain. Furthermore, we compare two films containing different concentrations of gold NPs and same amount of QDs, to investigate the role of acceptor concentration (Au-NPs) in order to promote an effective and efficient energy transfer mechanism. Gain induced transparency in bulk systems represents a promising path towards the realization of loss compensated plasmonic devices. (C) 2016 Optical Society of America
引用
收藏
页码:14632 / 14641
页数:10
相关论文
共 43 条
[1]   Effect of Gold Nanoparticle Aggregation on Cell Uptake and Toxicity [J].
Albanese, Alexandre ;
Chan, Warren C. W. .
ACS NANO, 2011, 5 (07) :5478-5489
[2]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[3]   Observation of strong coupling between one atom and a monolithic microresonator [J].
Aoki, Takao ;
Dayan, Barak ;
Wilcut, E. ;
Bowen, W. P. ;
Parkins, A. S. ;
Kippenberg, T. J. ;
Vahala, K. J. ;
Kimble, H. J. .
NATURE, 2006, 443 (7112) :671-674
[4]   Nanoparticle polymer composites: Where two small worlds meet [J].
Balazs, Anna C. ;
Emrick, Todd ;
Russell, Thomas P. .
SCIENCE, 2006, 314 (5802) :1107-1110
[5]   Gold Nanoparticles Aggregation: Drastic Effect of Cooperative Functionalities in a Single Molecular Conjugate [J].
Chegel, Volodymyr ;
Rachkov, Oleksandre ;
Lopatynskyi, Andrii ;
Ishihara, Shinsuke ;
Yanchuk, Igor ;
Nemoto, Yoshihiro ;
Hill, Jonathan P. ;
Ariga, Katsuhiko .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (04) :2683-2690
[6]   Plasmonic-Molecular Resonance Coupling: Plasmonic Splitting versus Energy Transfer [J].
Chen, Huanjun ;
Shao, Lei ;
Woo, Kat Choi ;
Wang, Jianfang ;
Lin, Hai-Qing .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (26) :14088-14095
[7]   Exciton-Plasmon Interactions in Quantum Dot-Gold Nanoparticle Structures [J].
Cohen-Hoshen, Eyal ;
Bryant, Garnett W. ;
Pinkas, Iddo ;
Sperling, Joseph ;
Bar-Joseph, Israel .
NANO LETTERS, 2012, 12 (08) :4260-4264
[8]   Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores [J].
De Luca, A. ;
Dhama, R. ;
Rashed, A. R. ;
Coutant, C. ;
Ravaine, S. ;
Barois, P. ;
Infusino, M. ;
Strangi, G. .
APPLIED PHYSICS LETTERS, 2014, 104 (10)
[9]   Plasmon mediated super-absorber flexible nanocomposites for metamaterials [J].
De Luca, Antonio ;
Depalo, Nicoletta ;
Fanizza, Elisabetta ;
Striccoli, Marinella ;
Curri, M. Lucia ;
Infusino, Melissa ;
Rashed, Alireza R. ;
La Deda, Massimo ;
Strangi, Giuseppe .
NANOSCALE, 2013, 5 (13) :6097-6105
[10]  
De Luca A, 2012, J MATER CHEM, V22, P8846, DOI [10.1039/c2jm30341h, 10.1039/c2jm30341]