Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries

被引:146
作者
Cagnioncle, Amandine-Marie [1 ]
Parmentier, E. M.
Elkins-Tanton, Linda T.
机构
[1] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA
[2] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA
关键词
D O I
10.1029/2007JB004934
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hydrous fluids derived by dehydration of the downgoing slab at convergent plate boundaries are thought to provoke wet melting in the wedge above the downgoing plate. We have investigated the distribution of hydrous fluid and subsequent melt in the wedge using two-dimensional models that include solid mantle flow and associated temperature distributions along with buoyant fluid migration and melting. Solid mantle flow deflects hydrous fluid from their buoyant vertical migration through the wedge. Melting therefore does not occur directly above the region where hydrous fluids are released from the slab. A melting front develops where hydrous fluids first encounter mantle material hot enough to melt. Wet melting is influenced by solid flow through the advection of fertile mantle material into the wet melting region and the removal of depleted material. The region of maximum melting occurs where the maximum flux of water from slab mineral dehydration reaches the wet melting region. The extent of melting (F) and melt production rates increase with increasing convergence rate and grain size due to increased temperatures along the melting front and to increased fractions of water reaching the melting front, respectively. The position of isotherms above the wet solidus varies with increasing slab dip and thereby also influences F and melt production rates. Applying the understanding of wet melting from this study to geochemical studies of the Aleutians may help elucidate the processes influencing fluid migration and melt production in that region. Estimates of the timescale of fluid migration, seismic velocity variation, and attenuation are also investigated.
引用
收藏
页数:19
相关论文
共 78 条