Electrochemical CO2 reduction to CO on dendritic Ag-Cu electrocatalysts prepared by electrodeposition

被引:157
作者
Choi, Jihui [1 ]
Kim, Myung Jun [2 ]
Ahn, Sang Hyun [3 ]
Choi, Insoo [4 ]
Jang, Jong Hyun [5 ]
Ham, Yu Seok [2 ]
Kim, Jae Jeong [2 ]
Kim, Soo-Kil [1 ]
机构
[1] Chung Ang Univ, Sch Integrat Engn, 84 Heukseok Ro, Seoul 156756, South Korea
[2] Seoul Natl Univ, Inst Chem Proc, Sch Chem & Biol Engn, 599 Gwanangno, Seoul 151744, South Korea
[3] Chung Ang Univ, Sch Chem Engn & Mat Sci, 84 Heukseok Ro, Seoul 156756, South Korea
[4] Kangwon Natl Univ, Div Energy Engn, 346 Jungang Ro, Samcheok 25913, Gangwon Do, South Korea
[5] Korea Inst Sci & Technol, Fuel Cell Res Ctr, Hwarangno 14 Gil 5, Seoul 136791, South Korea
关键词
Electrochemical carbon dioxide reduction; Carbon monoxide production; Electrodeposition; Silver-copper dendrite catalyst; SINGLE-CRYSTAL ELECTRODES; CARBON-DIOXIDE; METAL-ELECTRODES; ALLOY FORMATION; COPPER; ELECTROREDUCTION; CATALYSTS; SURFACE; SELECTIVITY; CONVERSION;
D O I
10.1016/j.cej.2016.04.037
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ag, Ag-Cu and Cu dendrite catalysts were electrochemically prepared on a Cu foil substrate to investigate their catalytic activity and selectivity for electrochemical CO2 reduction to CO. As the Cu content increased, the morphologies of Ag-Cu dendrite catalysts changed significantly from round to flower-like shapes accompanied by a decrease in branch size of the dendritic structure. A crystallographic study of the Ag-Cu dendrite catalysts demonstrated the formation of Ag and Cu co-deposits, while a compositional characterization confirmed the presence of a Cu-rich surface. Among the synthesized dendrite catalysts, the Agno dendrite catalyst achieved the highest CO faradaic efficiency of 64.6% at a constant potential of -1.7 V-scE in CO2-saturated 0.5 M KHCO3 electrolyte. However, the catalytic activity of Ag57Cu43 dendrite catalyst was 2.2 times higher than that of the Agwo dendrite catalyst, in terms of Ag mass activity. By controlling the composition of Ag and Cu, direct formation of syn-gas or enhancement in the mass activity to CO production was achievable. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 44
页数:8
相关论文
共 44 条
[21]   Diesel Production from Fischer-Tropsch: The Past, the Present, and New Concepts [J].
Leckel, Dieter .
ENERGY & FUELS, 2009, 23 (5-6) :2342-2358
[22]   CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films [J].
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (17) :7231-7234
[23]   LOW-ENERGY ELECTRON-DIFFRACTION FROM CU(111) - SUBTHRESHOLD EFFECT AND ENERGY-DEPENDENT INNER POTENTIAL - SURFACE RELAXATION AND METRIC DISTANCES BETWEEN SPECTRA [J].
LINDGREN, SA ;
WALLDEN, L ;
RUNDGREN, J ;
WESTRIN, P .
PHYSICAL REVIEW B, 1984, 29 (02) :576-588
[24]   Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles [J].
Linic, S ;
Jankowiak, J ;
Barteau, MA .
JOURNAL OF CATALYSIS, 2004, 224 (02) :489-493
[25]   A selective and efficient electrocatalyst for carbon dioxide reduction [J].
Lu, Qi ;
Rosen, Jonathan ;
Zhou, Yang ;
Hutchings, Gregory S. ;
Kimmel, Yannick C. ;
Chen, Jingguang G. ;
Jiao, Feng .
NATURE COMMUNICATIONS, 2014, 5
[26]   The teraton challenge. A review of fixation and transformation of carbon dioxide [J].
Mikkelsen, Mette ;
Jorgensen, Mikkel ;
Krebs, Frederik C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (01) :43-81
[27]   Exceptional Size-Dependent Activity Enhancement in the Electroreduction of CO2 over Au Nanoparticles [J].
Mistry, Hemma ;
Reske, Rulle ;
Zeng, Zhenhua ;
Zhao, Zhi-Jian ;
Greeley, Jeffrey ;
Strasser, Peter ;
Roldan Cuenya, Beatriz .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (47) :16473-16476
[28]   Ag-Cu alloy surfaces in an oxidizing environment: A first-principles study [J].
Piccinin, Simone ;
Stampfl, Catherine ;
Scheffler, Matthias .
SURFACE SCIENCE, 2009, 603 (10-12) :1467-1475
[29]   A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels [J].
Qiao, Jinli ;
Liu, Yuyu ;
Hong, Feng ;
Zhang, Jiujun .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (02) :631-675
[30]   Hydrogenation of CO2 to dimethyl ether on La-, Ce-modified Cu-Fe/HZSM-5 catalysts [J].
Qin, Zu-zeng ;
Zhou, Xin-hui ;
Su, Tong-ming ;
Jiang, Yue-xiu ;
Ji, Hong-bing .
CATALYSIS COMMUNICATIONS, 2016, 75 :78-82