Effective and practical parameters of electrochemical Li-ion battery models for degradation diagnosis

被引:62
作者
Kim, Jungsoo [1 ]
Chun, Huiyong [1 ]
Kim, Minho [1 ]
Han, Soohee [1 ,2 ]
Lee, Jang-Woo [3 ]
Lee, Tae-Kyung [3 ]
机构
[1] Pohang Univ Sci & Technol, Dept Convergence IT Engn, Cheongam Ro 77, Pohang Si 37673, Gyeongsangbuk D, South Korea
[2] Pohang Univ Sci & Technol, Dept Elect Engn, Cheongam Ro 77, Pohang Si 37673, Gyeongsangbuk D, South Korea
[3] SAMSUNG SDI Co Ltd, Yongin 15020, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Aging parameter; Degradation diagnosis; Electrochemical battery model; Li-ion battery; Parameter identification; IDENTIFICATION; STATE; MECHANISMS; OPTIMIZATION; PROGNOSTICS; DISCHARGE; DESIGN;
D O I
10.1016/j.est.2021.103077
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The pseudo-2-dimensional (P2D) model parameters of Li-ion batteries are important indicators of their properties, characteristics, and conditions. For safe operation, it is essential to discover the effective P2D model parameters closely related to the degradation state of the battery. This paper proposes a practical method for identifying and selecting effective P2D model parameters that significantly change with battery aging. As per the proposed procedure, the aging parameters distinctly correlated with the battery degradation states are selected, and effectively and reliably identified through experiments with multiple profiles, such as constant current-constant voltage (CCCV) chirp sequences, hybrid pulse power characterization (HPPC) cycles, and driving cycles. To identify the optimal parameters, the obtained experimental data are fitted to the P2D model using the genetic algorithm. The mean error between the experimental data and the output voltages of the P2D model with the identified parameters is 18.79 mV, showing high accuracy. Certain parameters that converge to distinctly different values at the beginning-of-life (BOL) and end-of-life (EOL) of a battery are selected as the aging parameters. Consequently, the cathode particle surface area, stoichiometry limits, and porosities were selected as aging parameters, and it is demonstrated that those parameters shift with aging.
引用
收藏
页数:10
相关论文
共 37 条
[1]   Reduced-Order Electrochemical Model Parameters Identification and SOC Estimation for Healthy and Aged Li-Ion Batteries Part I: Parameterization Model Development for Healthy Batteries [J].
Ahmed, Ryan ;
El Sayed, Mohammed ;
Arasaratnam, Ienkaran ;
Tjong, Jimi ;
Habibi, Saeid .
IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2014, 2 (03) :659-677
[2]   Electrochemical Model-Based State of Charge and Capacity Estimation for a Composite Electrode Lithium-Ion Battery [J].
Bartlett, Alexander ;
Marcicki, James ;
Onori, Simona ;
Rizzoni, Giorgio ;
Yang, Xiao Guang ;
Miller, Ted .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2016, 24 (02) :384-399
[3]   Degradation diagnostics for lithium ion cells [J].
Birkl, Christoph R. ;
Roberts, Matthew R. ;
McTurk, Euan ;
Bruce, Peter G. ;
Howey, David A. .
JOURNAL OF POWER SOURCES, 2017, 341 :373-386
[4]  
Casals L.C., 2019, World Electric Vehicle Journal, V10, P1, DOI [DOI 10.3390/WEVJ10040063, 10.3390/wevj10040063]
[5]   Real-Time Parameter Estimation of an Electrochemical Lithium-Ion Battery Model Using a Long Short-Term Memory Network [J].
Chun, Huiyong ;
Kim, Jungsoo ;
Yu, Jungwook ;
Han, Soohee .
IEEE ACCESS, 2020, 8 :81789-81799
[6]   Adaptive Exploration Harmony Search for Effective Parameter Estimation in an Electrochemical Lithium-Ion Battery Model [J].
Chun, Huiyong ;
Kim, Minho ;
Kim, Jungsoo ;
Kim, Kwangrae ;
Yu, Jungwook ;
Kim, Taegyun ;
Han, Soohee .
IEEE ACCESS, 2019, 7 :131501-131511
[7]   Simplification and order reduction of lithium-ion battery model based on porous-electrode theory [J].
Dao, Thanh-Son ;
Vyasarayani, Chandrika P. ;
McPhee, John .
JOURNAL OF POWER SOURCES, 2012, 198 :329-337
[8]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[9]   Behavior and state-of-health monitoring of Li-ion batteries using impedence spectroscopy and recurrent neural networks [J].
Eddahech, Akram ;
Briat, Olivier ;
Bertrand, Nicolas ;
Deletage, Jean-Yves ;
Vinassa, Jean-Michel .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2012, 42 (01) :487-494
[10]   Genetic identification and fisher identifiability analysis of the Doyle-Fuller-Newman model from experimental cycling of a LiFePO4 cell [J].
Forman, Joel C. ;
Moura, Scott J. ;
Stein, Jeffrey L. ;
Fathy, Hosam K. .
JOURNAL OF POWER SOURCES, 2012, 210 :263-275