Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast

被引:18
作者
Soares, Jimmy [1 ]
Demeke, Mekonnen M. [2 ,3 ]
Van de Velde, Miet [4 ]
Foulquie-Moreno, Maria R. [2 ,3 ]
Kerstens, Dorien [5 ]
Sels, Bert F. [5 ]
Verplaetse, Alex [4 ]
Ribeiro Fernandes, Antonio Alberto [1 ]
Thevelein, Johan M. [2 ,3 ]
Bueno Fernandes, Patricia Machado [1 ]
机构
[1] Univ Fed Espirito Santo, Ctr Ciencias Saude, Nucleo Biotecnol, BR-29040090 Vitoria, ES, Brazil
[2] Katholieke Univ Leuven, Inst Bot & Microbiol, Mol Cell Biol Lab, Leuven, Belgium
[3] VIB, Ctr Microbiol, Kasteelpk Arenberg 31, B-3001 Leuven Heverlee, Flanders, Belgium
[4] Katholieke Univ Leuven, Lab Enzyme Fermentat & Brewery Technol, Cluster Bioengn Technol CBeT, Fac Engn Technol,Dept Microbial & Mol Syst M2S, Ghent, Belgium
[5] Dept Microbial & Mol Syst, Kasteelpk Arenberg 23, B-3001 Leuven Heverlee, Flanders, Belgium
关键词
Coconut; Alkaline pretreatment; High-solid load; Advanced bioethanol; Non-detoxified; hydrolysate; Mesocarp; HIGH-SOLIDS LOADINGS; SACCHAROMYCES-CEREVISIAE; SIMULTANEOUS SACCHARIFICATION; ENZYMATIC-HYDROLYSIS; ETHANOL-PRODUCTION; PRETREATMENT; CONVERSION; BIOMASS; LIGNOCELLULOSE; STRATEGIES;
D O I
10.1016/j.biortech.2017.07.140
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The residual biomass obtained from the production of Cocos nucifera L. (coconut) is a potential source of feedstock for bioethanol production. Even though coconut hydrolysates for ethanol production have previously been obtained, high-solid loads to obtain high sugar and ethanol levels remain a challenge. We investigated the use of a fed-batch regime in the production of sugar-rich hydrolysates from the green coconut fruit and its mesocarp. Fermentation of the hydrolysates obtained from green coconut or its mesocarp, containing 8.4 and 9.7% (w/v) sugar, resulted in 3.8 and 4.3% (v/v) ethanol, respectively. However, green coconut hydrolysate showed a prolonged fermentation lag phase. The inhibitor profile suggested that fatty acids and acetic acid were the main fermentation inhibitors. Therefore, a fed-batch regime with mild alkaline pretreatment followed by saccharification, is presented as a strategy for fermentation of such challenging biomass hydrolysates, even though further improvement of yeast inhibitor tolerance is also needed.
引用
收藏
页码:234 / 242
页数:9
相关论文
共 31 条
  • [1] The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates
    Adeboye, Peter Temitope
    Bettiga, Maurizio
    Olsson, Lisbeth
    [J]. AMB EXPRESS, 2014, 4 : 1 - 10
  • [2] Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
    Almeida, Jodo R. M.
    Modig, Tobias
    Petersson, Anneli
    Hahn-Hagerdal, Barbel
    Liden, Gunnar
    Gorwa-Grauslund, Marie F.
    [J]. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2007, 82 (04) : 340 - 349
  • [3] BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
  • [4] New insights into the toxicity mechanism of octanoic and decanoic acids on Saccharomyces cerevisiae
    Borrull, Anna
    Lopez-Martinez, Gema
    Poblet, Montse
    Cordero-Otero, Ricardo
    Rozes, Nicolas
    [J]. YEAST, 2015, 32 (05) : 451 - 460
  • [5] Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review
    Brethauer, Simone
    Studer, Michael H.
    [J]. CHIMIA, 2015, 69 (10) : 572 - 581
  • [6] Green Chemistry, Biofuels, and Biorefinery
    Clark, James H.
    Luque, Rafael
    Matharu, Avtar S.
    [J]. ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 3, 2012, 3 : 183 - 207
  • [7] Enhanced enzymatic hydrolysis of lignocellulose by integrated decrystallization and fed-batch operation
    Cui, Mei
    Zhang, Yimin
    Huang, Renliang
    Su, Rongxin
    Qi, Wei
    He, Zhimin
    [J]. RSC ADVANCES, 2014, 4 (84): : 44659 - 44665
  • [8] Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production
    Demeke, Mekonnen M.
    Dumortier, Francoise
    Li, Yingying
    Broeckx, Tom
    Foulquie-Moreno, Maria R.
    Thevelein, Johan M.
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
  • [9] Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
    Demeke, Mekonnen M.
    Dietz, Heiko
    Li, Yingying
    Foulquie-Moreno, Maria R.
    Mutturi, Sarma
    Deprez, Sylvie
    Den Abt, Tom
    Bonini, Beatriz M.
    Liden, Gunnar
    Dumortier, Francoise
    Verplaetse, Alex
    Boles, Eckhard
    Thevelein, Johan M.
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
  • [10] Profiling C6-C3 and C6-C1 phenolic metabolites in Cocos nucifera
    Dey, G
    Chakraborty, M
    Mitra, A
    [J]. JOURNAL OF PLANT PHYSIOLOGY, 2005, 162 (04) : 375 - 381