Structural evolution of the silicon nanowire via molecular dynamics simulations: the double-strand atomic chain and the monatomic chain

被引:20
作者
Wang, Feng-Chao [1 ]
Zhao, Ya-Pu [1 ]
机构
[1] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Monatomic chain; Double-strand atomic chain; Silicon; Bond rupture; Molecular dynamics simulations; MECHANICS; BEHAVIOR; MEMORY;
D O I
10.1007/s00419-014-0935-x
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We conducted molecular dynamics simulations to investigate the dynamic structural evolution of the silicon nanowire under the axial tension load. The formations of the double-strand atomic chain and the monatomic chain were observed before the silicon nanowire is completely broken. During these two stages, the zigzag and linear configurations appear alternately. Every sudden decrease in the calculated force curve corresponds to a transition from the linear chain to the zigzag chain, which indicates the force relaxation due to the insert of the new atom into the chain. The present work reveals the structural evolution on the atomic scale and discusses the formation mechanism of the double-strand atomic chain and the monatomic chain. Our findings provide insight into the understanding of the dynamic structural evolution of the low-dimensional silicon materials, which has potential applications in the design and fabrication of the silicon-based nanodevices.
引用
收藏
页码:323 / 329
页数:7
相关论文
共 27 条
[1]   Helical [110] gold nanowires make longer linear atomic chains [J].
Amorim, E. P. M. ;
da Silva, E. Z. .
PHYSICAL REVIEW LETTERS, 2008, 101 (12)
[2]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[3]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[4]   The strength of gold nanowires [J].
Gall, K ;
Diao, JK ;
Dunn, ML .
NANO LETTERS, 2004, 4 (12) :2431-2436
[5]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5
[6]   Control of thickness and orientation of solution-grown silicon nanowires [J].
Holmes, JD ;
Johnston, KP ;
Doty, RC ;
Korgel, BA .
SCIENCE, 2000, 287 (5457) :1471-1473
[7]   Exploring Nanomechanical Behavior of Silicon Nanowires: AFM Bending Versus Nanoindentation [J].
Kim, Yong-Jae ;
Son, Kwangsoo ;
Choi, In-Chul ;
Choi, In-Suk ;
Park, Won Il ;
Jang, Jae-il .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (02) :279-286
[8]   First-principles study of the Young's modulus of Si ⟨001⟩ nanowires [J].
Lee, Byeongchan ;
Rudd, Robert E. .
PHYSICAL REVIEW B, 2007, 75 (04)
[9]   Heat dissipation in atomic-scale junctions [J].
Lee, Woochul ;
Kim, Kyeongtae ;
Jeong, Wonho ;
Angela Zotti, Linda ;
Pauly, Fabian ;
Carlos Cuevas, Juan ;
Reddy, Pramod .
NATURE, 2013, 498 (7453) :209-+
[10]   How to identify dislocations in molecular dynamics simulations? [J].
Li Duo ;
Wang FengChao ;
Yang ZhenYu ;
Zhao YaPu .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2014, 57 (12) :2177-2187