Hunting Electromagnetic Counterparts of Gravitational-wave Events Using the Zwicky Transient Facility

被引:12
|
作者
Ghosh, Shaon [1 ]
Chatterjee, Deep [1 ]
Kaplan, David L. [1 ]
Brady, Patrick R. [1 ]
Van Sistine, Angela [1 ]
机构
[1] Univ Wisconsin, Dept Phys, Milwaukee, WI 53211 USA
基金
美国国家科学基金会;
关键词
gravitational waves; methods: data analysis; telescopes;
D O I
10.1088/1538-3873/aa884f
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Detections of coalescing binary black holes by LIGO have opened a new window of transient astronomy. With increasing sensitivity of LIGO and participation of the Virgo detector in Cascina, Italy, we expect to soon detect coalescence of compact binary systems with one or more neutron stars. These are the prime targets for electromagnetic follow-up of gravitational wave triggers, which holds enormous promise of rich science. However, hunting for electromagnetic counterparts of gravitational wave events is a non-trivial task due to the sheer size of the error regions, which could span hundreds of square degrees. This may require deep observation with large field-of-view telescopes and/or use of galaxy catalogs. The Zwicky Transient facility (ZTF), scheduled to begin operation in 2017, is designed to cover such large sky-localization areas. In this work, we present the strategies of efficiently tiling the sky to facilitate the observation of the gravitational wave error regions using ZTF. To do this, we used simulations consisting of 475 binary neutron star coalescences detected using a mix of two- and three-detector networks. Our studies reveal that, using two overlapping sets of ZTF tiles and a (modified) ranked-tiling algorithm, we can cover the gravitational-wave sky-localization regions with half as many pointings as a simple contour-covering algorithm. We then incorporated the ranked-tiling strategy to study our ability to observe the counterparts. This requires optimization of observation depth and localization area coverage. Our results show that observation in r-band with similar to 600 seconds of integration time per pointing seems to be optimum for typical assumed brightnesses of electromagnetic counterparts, if we plan to spend equal amount of time per pointing. However, our results also reveal that we can gain by as much as 50% in detection efficiency if we linearly scale our integration time per pointing based on the tile probability.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Searching for electromagnetic counterparts to gravitational-wave merger events with the prototype Gravitational-Wave Optical Transient Observer (GOTO-4)
    Gompertz, B. P.
    Cutter, R.
    Steeghs, D.
    Galloway, D. K.
    Lyman, J.
    Ulaczyk, K.
    Dyer, M. J.
    Ackley, K.
    Dhillon, V. S.
    O'Brien, P. T.
    Ramsay, G.
    Poshyachinda, S.
    Kotak, R.
    Nuttall, L.
    Breton, R. P.
    Palle, E.
    Pollacco, D.
    Thrane, E.
    Aukkaravittayapun, S.
    Awiphan, S.
    Brown, M. J., I
    Burhanudin, U.
    Chote, P.
    Chrimes, A. A.
    Daw, E.
    Duffy, C.
    Eyles-Ferris, R. A. J.
    Heikkila, T.
    Irawati, P.
    Kennedy, M. R.
    Killestein, T.
    Levan, A. J.
    Littlefair, S.
    Makrygianni, L.
    Marsh, T.
    Sanchez, D. Mata
    Mattila, S.
    Maund, J.
    McCormac, J.
    Mkrtichian, D.
    Mong, Y-L
    Mullaney, J.
    Muller, B.
    Obradovic, A.
    Rol, E.
    Sawangwit, U.
    Stanway, E. R.
    Starling, R. L. C.
    Strom, P. A.
    Tooke, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (01) : 726 - 738
  • [2] Electromagnetic counterparts of gravitational-wave signals
    Nuttall L.K.
    Berry C.P.L.
    Astronomy and Geophysics, 2021, 62 (04): : 415 - 421
  • [3] Electromagnetic counterparts of gravitational-wave signals
    Nuttall, Laura K.
    Berry, Christopher P. L.
    ASTRONOMY & GEOPHYSICS, 2021, 62 (04)
  • [4] Searching for Gravitational Wave Optical Counterparts with the Zwicky Transient Facility: Summary of O4a
    Ahumada, Tomas
    Anand, Shreya
    Coughlin, Michael W.
    Gupta, Vaidehi
    Kasliwal, Mansi M.
    Karambelkar, Viraj R.
    Stein, Robert D.
    Waratkar, Gaurav
    Swain, Vishwajeet
    du Laz, Theophile Jegou
    Anumarlapudi, Akash
    Andreoni, Igor
    Bulla, Mattia
    Srinivasaragavan, Gokul P.
    Toivonen, Andrew
    Wold, Avery
    Bellm, Eric C.
    Cenko, S. Bradley
    Kaplan, David L.
    Sollerman, Jesper
    Bhalerao, Varun
    Perley, Daniel
    Salgundi, Anirudh
    Suresh, Aswin
    Hinds, K-Ryan
    Reusch, Simeon
    Necker, Jannis
    Cook, David O.
    Pletskova, Natalya
    Singer, Leo P.
    Banerjee, Smaranika
    Barna, Tyler
    Copperwheat, Christopher M.
    Healy, Brian
    Kiendrebeogo, R. Weizmann
    Kumar, Harsh
    Kumar, Ravi
    Pezzella, Marianna
    Sagues-Carracedo, Ana
    Sravan, Niharika
    Bloom, Joshua S.
    Chen, Tracy X.
    Graham, Matthew
    Helou, George
    Laher, Russ R.
    Mahabal, Ashish A.
    Purdum, Josiah
    Anupama, G. C.
    Barway, Sudhanshu
    Basu, Judhajeet
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2024, 136 (11)
  • [5] Using machine learning for transient classification in searches for gravitational-wave counterparts
    Stachie, Cosmin
    Coughlin, Michael W.
    Christensen, Nelson
    Muthukrishna, Daniel
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (02) : 1320 - 1331
  • [6] A Systematic Search of Zwicky Transient Facility Data for Ultracompact Binary LISA-detectable Gravitational-wave Sources
    Burdge, Kevin B.
    Prince, Thomas A.
    Fuller, Jim
    Kaplan, David L.
    Marsh, Thomas R.
    Tremblay, Pier-Emmanuel
    Zhuang, Zhuyun
    Bellm, Eric C.
    Caiazzo, Ilaria
    Coughlin, Michael W.
    Dhillon, Vik S.
    Gaensicke, Boris
    Rodriguez-Gil, Pablo
    Graham, Matthew J.
    Hermes, J. J.
    Kupfer, Thomas
    Littlefair, S. P.
    Mroz, Przemek
    Phinney, E. S.
    van Roestel, Jan
    Yao, Yuhan
    Dekany, Richard G.
    Drake, Andrew J.
    Duev, Dmitry A.
    Hale, David
    Feeney, Michael
    Helou, George
    Kaye, Stephen
    Mahabal, Ashish A.
    Masci, Frank J.
    Riddle, Reed
    Smith, Roger
    Soumagnac, Maayane T.
    Kulkarni, S. R.
    ASTROPHYSICAL JOURNAL, 2020, 905 (01):
  • [7] FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS
    Aasi, J.
    Abadie, J.
    Abbott, B. P.
    Abbott, R.
    Abbott, T.
    Abernathy, M. R.
    Accadia, T.
    Acernese, F.
    Adams, C.
    Adams, T.
    Adhikari, R. X.
    Affeldt, C.
    Agathos, M.
    Aggarwal, N.
    Aguiar, O. D.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Ceron, E. Amador
    Amariutei, D.
    Anderson, R. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C.
    Areeda, J.
    Ast, S.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Austin, L.
    Aylott, B. E.
    Babak, S.
    Baker, P. T.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barker, D.
    Barnum, S. H.
    Barone, F.
    Barr, B.
    Barsotti, L.
    Barsuglia, M.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Basti, A.
    Batch, J.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2014, 211 (01):
  • [8] Electromagnetic counterparts to gravitational wave events from Gaia
    Kostrzewa-Rutkowska, Z.
    Jonker, P. G.
    Hodgkin, S. T.
    Eappachen, D.
    Harrison, D. L.
    Koposov, S. E.
    Rixon, G.
    Wyrzykowski, L.
    Yoldas, A.
    Breedt, E.
    Delgado, A.
    van Leeuwen, M.
    Wevers, T.
    Burgess, P. W.
    De Angeli, F.
    Evans, D. W.
    Osborne, P. J.
    Riello, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (03) : 3264 - 3273
  • [9] Prospects for the detection of electromagnetic counterparts to gravitational wave events
    Sylvestre, J
    ASTROPHYSICAL JOURNAL, 2003, 591 (02): : 1152 - 1156
  • [10] Predicting electromagnetic counterparts using low-latency gravitational-wave data products
    Stachie, Cosmin
    Coughlin, Michael W.
    Dietrich, Tim
    Antier, Sarah
    Bulla, Mattia
    Christensen, Nelson
    Essick, Reed
    Landry, Philippe
    Mours, Benoit
    Schianchi, Federico
    Toivonen, Andrew
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 505 (03) : 4235 - 4248