Localization of lattice dynamics in low-angle twisted bilayer graphene

被引:167
作者
Gadelha, Andreij C. [1 ]
Ohlberg, Douglas A. A. [1 ]
Rabelo, Cassiano [2 ]
Neto, Eliel G. S. [3 ]
Vasconcelos, Thiago L. [4 ]
Campos, Joao L. [1 ]
Lemos, Jessica S. [1 ]
Ornelas, Vinicius [1 ]
Miranda, Daniel [1 ]
Nadas, Rafael [1 ]
Santana, Fabiano C. [1 ]
Watanabe, Kenji [5 ]
Taniguchi, Takashi [5 ]
van Troeye, Benoit [6 ]
Lamparski, Michael [6 ]
Meunier, Vincent [6 ]
Nguyen, Viet-Hung [7 ]
Paszko, Dawid [7 ]
Charlier, Jean-Christophe [7 ]
Campos, Leonardo C. [1 ]
Cancado, Luiz G. [1 ]
Medeiros-Ribeiro, Gilberto [8 ]
Jorio, Ado [1 ,2 ]
机构
[1] Univ Fed Minas Gerais, Phys Dept, Belo Horizonte, MG, Brazil
[2] Univ Fed Minas Gerais, Elect Engn Grad Program, Belo Horizonte, MG, Brazil
[3] Univ Fed Bahia, Phys Inst, Campus Univ Ondina, Salvador, BA, Brazil
[4] Inmetro, Div Metrol Mat, Duque De Caxias, RJ, Brazil
[5] Natl Inst Mat Sci, Ibaraki, Japan
[6] Jonsson Rowland Sci Ctr, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[7] Catholic Univ Louvain, Inst Condensed Matter & Nanosci, Louvain La Neuve, Belgium
[8] Univ Fed Minas Gerais, Comp Sci Dept, Belo Horizonte, MG, Brazil
基金
欧盟地平线“2020”;
关键词
RAMAN-SPECTROSCOPY; SCATTERING;
D O I
10.1038/s41586-021-03252-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Twisted bilayer graphene is created by slightly rotating the two crystal networks in bilayer graphene with respect to each other. For small twist angles, the material undergoes a self-organized lattice reconstruction, leading to the formation of a periodically repeated domain(1-3). The resulting superlattice modulates the vibrational(3,4) and electronic(5,6) structures within the material, leading to changes in the behaviour of electron-phonon coupling(7,8) and to the observation of strong correlations and superconductivity(9). However, accessing these modulations and understanding the related effects are challenging, because the modulations are too small for experimental techniques to accurately resolve the relevant energy levels and too large for theoretical models to properly describe the localized effects. Here we report hyperspectral optical images, generated by a nano-Raman spectroscope(10), of the crystal superlattice in reconstructed (low-angle) twisted bilayer graphene. Observations of the crystallographic structure with visible light are made possible by the nano-Raman technique, which reveals the localization of lattice dynamics, with the presence of strain solitons and topological points(1) causing detectable spectral variations. The results are rationalized by an atomistic model that enables evaluation of the local density of the electronic and vibrational states of the superlattice. This evaluation highlights the relevance of solitons and topological points for the vibrational and electronic properties of the structures, particularly for small twist angles. Our results are an important step towards understanding phonon-related effects at atomic and nanometric scales, such as Jahn-Teller effects(11) and electronic Cooper pairing(12-14), and may help to improve device characterization(15) in the context of the rapidly developing field of twistronics(16). Nano-Raman spectroscopy reveals localization of some vibrational modes in reconstructed twisted bilayer graphene and provides qualitative insights into how electron-phonon coupling affects the vibrational and electronic properties of the material.
引用
收藏
页码:405 / 409
页数:13
相关论文
共 46 条
  • [1] Strain solitons and topological defects in bilayer graphene
    Alden, Jonathan S.
    Tsen, Adam W.
    Huang, Pinshane Y.
    Hovden, Robert
    Brown, Lola
    Park, Jiwoong
    Muller, David A.
    McEuen, Paul L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (28) : 11256 - 11260
  • [2] Valley Jahn-Teller Effect in Twisted Bilayer Graphene
    Angeli, M.
    Tosatti, E.
    Fabrizio, M.
    [J]. PHYSICAL REVIEW X, 2019, 9 (04)
  • [3] Unconventional superconductivity in magic-angle graphene superlattices
    Cao, Yuan
    Fatemi, Valla
    Fang, Shiang
    Watanabe, Kenji
    Taniguchi, Takashi
    Kaxiras, Efthimios
    Jarillo-Herrero, Pablo
    [J]. NATURE, 2018, 556 (7699) : 43 - +
  • [4] Charlier JC, 2008, TOP APPL PHYS, V111, P673, DOI 10.1007/978-3-540-72865-8_21
  • [5] Phonons in twisted bilayer graphene
    Cocemasov, Alexandr I.
    Nika, Denis L.
    Balandin, Alexander A.
    [J]. PHYSICAL REVIEW B, 2013, 88 (03)
  • [6] Phonon renormalization in doped bilayer graphene
    Das, A.
    Chakraborty, B.
    Piscanec, S.
    Pisana, S.
    Sood, A. K.
    Ferrari, A. C.
    [J]. PHYSICAL REVIEW B, 2009, 79 (15)
  • [7] Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy
    Dresselhaus, Mildred S.
    Jorio, Ado
    Hofmann, Mario
    Dresselhaus, Gene
    Saito, Riichiro
    [J]. NANO LETTERS, 2010, 10 (03) : 751 - 758
  • [8] Extracting the Anharmonic Properties of the G-Band in Graphene Nanoplatelets
    Efthimiopoulos, Ilias
    Mayanna, Sathish
    Stavrou, Elissaios
    Torode, Antonius
    Wang, Yuejian
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (08) : 4835 - 4842
  • [9] Intralayer and interlayer electron-phonon interactions in twisted graphene heterostructures
    Eliel, G. S. N.
    Moutinho, M. V. O.
    Gadelha, A. C.
    Righi, A.
    Campos, L. C.
    Ribeiro, H. B.
    Chiu, Po-Wen
    Watanabe, K.
    Taniguchi, T.
    Puech, P.
    Paillet, M.
    Michel, T.
    Venezuela, P.
    Pimenta, M. A.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [10] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)