Metamodel-based Markov-Chain-Monte-Carlo parameter inversion applied in eddy current flaw characterization

被引:13
作者
Cai, Caifang [1 ]
Miorelli, Roberto [2 ]
Lambert, Marc [3 ]
Rodet, Thomas [4 ]
Lesselier, Dominique [1 ]
Lhuillier, Pierre-Emile [5 ]
机构
[1] Univ Paris Saclay, UMR CNRS 8506, L2S, CNRS,Cent Supelec,Univ Paris Sud, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[2] CEA, LIST, Dept Imagerie Simulat Controle, F-91191 Gif Sur Yvette, France
[3] UPMC Univ Paris 06, Univ Paris Sud, Univ Paris Saclay, GeePs,UMR CNRS 8507,Cent Supelec,Sorbonne Univ, 3 & 11 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[4] Univ Paris Saclay, ENS Cachan, SATIE, 61 Ave President Wilson, F-94230 Cachan, France
[5] EDF Lab Renardieres, Dept MMC, EDF R&D, F-77818 Moret Sur Loing, France
关键词
Inversion; MCMC; Eddy-current; Metamodel; Bayesian; IDEAL CRACK; COMPUTATION; SIGNALS; STATE;
D O I
10.1016/j.ndteint.2018.02.004
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Flaw characterization in eddy current testing usually requires to solve a non-linear inverse problem. Due to high computational cost, Markov Chain Monte Carlo (MCMC) methods are hardly employed since often needing many forward evaluations. However, they have good potential in dealing with complicated forward models and they do not reduce to only providing the parameters sought. Here, we introduce a computationally-cheap surrogate forward model into a MCMC algorithm for eddy current flaw characterization. Due to the use of a database trained off-line, we benefit from the MCMC algorithm for getting more information and we do not suffer from the computational burden. Numerous experiments are carried out to validate the approach. The results include not only the estimated parameters, but also standard deviations, marginal densities and correlation coefficients between two parameters of interest.
引用
收藏
页码:13 / 22
页数:10
相关论文
共 47 条
  • [1] 3-D Eddy-Current Imaging of Metal Tubes by Gradient-Based, Controlled Evolution of Level Sets
    Abascal, Juan Felipe P. J.
    Lambert, Marc
    Lesselier, Dominique
    Dorn, Oliver
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (12) : 4721 - 4729
  • [2] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [3] A tutorial on adaptive MCMC
    Andrieu, Christophe
    Thoms, Johannes
    [J]. STATISTICS AND COMPUTING, 2008, 18 (04) : 343 - 373
  • [4] [Anonymous], 1992, BAYESIAN INFERENCE S, DOI DOI 10.1002/9781118033197.CH4
  • [5] [Anonymous], 2003, Bayesian Inference: Parameter Estimation and Decisions
  • [6] Auld B. A., 1988, Journal of Nondestructive Evaluation, V7, P79, DOI 10.1007/BF00565779
  • [7] Kriging-based generation of optimal databases as forward and inverse surrogate models
    Bilicz, S.
    Lambert, M.
    Gyimothy, Sz
    [J]. INVERSE PROBLEMS, 2010, 26 (07)
  • [8] Inversion of eddy-current testing signals using a fast interpolation over an optimal defect-database
    Bilicz, Sandor
    [J]. ELECTROMAGNETIC NONDESTRUCTIVE EVALUATION (XVII), 2014, 39 : 315 - 322
  • [9] Sparse Grid Surrogate Models for Electromagnetic Problems With Many Parameters
    Bilicz, Sandor
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (03)
  • [10] Kriging for Eddy-Current Testing Problems
    Bilicz, Sandor
    Vazquez, Emmanuel
    Gyimothy, Szabolcs
    Pavo, Jozsef
    Lambert, Marc
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3165 - 3168