Simultaneous approximation in positive characteristic

被引:2
作者
Caulk, S [1 ]
Schmidt, WM [1 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
来源
MONATSHEFTE FUR MATHEMATIK | 2000年 / 131卷 / 01期
关键词
simultaneous approximation; non-archimedean absolute values;
D O I
10.1007/s006050070021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let r = r(alpha) be the approximation exponent of a power series alpha (so that when alpha is algebraic of degree d, then 2 less than or equal to r less than or equal to d by Dirichlet's and Liouville's Theorems). If the characteristic is positive, q is a power of the characteristic, and rr, as are related by a fractional linear transformation with polynomial coefficients, then by respective work of Voloch and of de Mathan, there are constants B-V ,B-M such that \alpha - P/Q\ < B\Q\(-r) has no solution if B < B-V, and infinitely many solutions if B > B-M We will formulate acid prove generalizations to simultaneous approximation. 2000 Mathematics Subject Classification: 11J61, 11J13.
引用
收藏
页码:15 / 28
页数:14
相关论文
共 8 条
[1]   APPROXIMATION EXPONENTS FOR ALGEBRAIC-FUNCTIONS IN POSITIVE CHARACTERISTIC [J].
DEMATHAN, B .
ACTA ARITHMETICA, 1992, 60 (04) :359-370
[2]  
Hartshorne R., 1977, ALGEBRAIC GEOM
[3]   A survey of diophantine approximation in fields of power series [J].
Lasjaunias, A .
MONATSHEFTE FUR MATHEMATIK, 2000, 130 (03) :211-229
[4]  
Lasjaunias A, 1996, J REINE ANGEW MATH, V473, P195
[5]  
Serre JP, 1988, GRADUATE TEXTS MATH, V117
[6]  
Uchiyama S., 1960, P JAPAN ACAD, V36, P1
[7]  
Voloch J.F., 1988, PERIOD MATH HUNGAR, V19, P217
[8]   DIOPHANTINE APPROXIMATION IN CHARACTERISTIC-P [J].
VOLOCH, JF .
MONATSHEFTE FUR MATHEMATIK, 1995, 119 (04) :321-325