A second-order exponential time differencing scheme for non-linear reaction-diffusion systems with dimensional splitting

被引:17
作者
Asante-Asamani, E. O. [1 ]
Kleefeld, A. [2 ]
Wade, B. A. [3 ]
机构
[1] Clarkson Univ, Dept Math, Potsdam, NY 13699 USA
[2] Forschungszentrum Julich, Julich Supercomp Ctr, D-52425 Julich, Germany
[3] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
关键词
Exponential time differencing; Real distinct pole; Dimensional splitting; Reaction-diffusion systems; Matrix exponential; RUNGE-KUTTA METHODS; INTEGRATION FACTOR METHOD; SMOOTHING SCHEMES; CHEBYSHEV METHODS; EXPLICIT METHODS; STABILITY; COMPUTE; SOLVER; MODEL;
D O I
10.1016/j.jcp.2020.109490
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A second-order L-stable exponential time-differencing (ETD) method is developed by combining an ETD scheme with approximating the matrix exponentials by rational functions having real distinct poles (RDP), together with a dimensional splitting integrating factor technique. A variety of non-linear reaction-diffusion equations in two and three dimensions with either Dirichlet, Neumann, or periodic boundary conditions are solved with this scheme and shown to outperform a variety of other second-order implicit-explicit schemes. An additional performance boost is gained through further use of basic parallelization techniques. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 70 条
[1]   Fourth order Chebyshev methods with recurrence relation [J].
Abdulle, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06) :2041-2054
[2]   Second order Chebyshev methods based on orthogonal polynomials [J].
Abdulle, A ;
Medovikov, AA .
NUMERISCHE MATHEMATIK, 2001, 90 (01) :1-18
[3]   PIROCK: A swiss-knife partitioned implicit-explicit orthogonal Runge-Kutta Chebyshev integrator for stiff diffusion-advection-reaction problems with or without noise [J].
Abdulle, Assyr ;
Vilmart, Gilles .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 :869-888
[4]   Implicit-explicit multistep methods for quasilinear parabolic equations [J].
Akrivis, G ;
Crouzeix, M ;
Makridakis, C .
NUMERISCHE MATHEMATIK, 1999, 82 (04) :521-541
[5]  
[Anonymous], ARXIV191203312
[6]  
[Anonymous], 2015, MULTIPLE SHOOTING TI
[7]  
[Anonymous], ELEMENTARY NUMERICAL
[8]  
[Anonymous], MODELLING ENG HUMAN
[9]  
[Anonymous], 2003, MATH BIOL 2 SPATIAL
[10]  
[Anonymous], 2002, INTERDISCIPLINARY AP