Enzymatically Degradable Mussel-Inspired Adhesive Hydrogel

被引:184
|
作者
Brubaker, Carrie E. [1 ,4 ,5 ]
Messersmith, Phillip B. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Chem & Biol Engn Dept, Evanston, IL 60208 USA
[4] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA
[5] Northwestern Univ, Inst BioNanotechnol Med, Chicago, IL 60611 USA
[6] Northwestern Univ, Robert H Lurie Comprehens Canc Ctr, Chicago, IL 60611 USA
基金
美国国家卫生研究院;
关键词
POLY(ETHYLENE GLYCOL) HYDROGELS; MYTILUS-EDULIS; LINKING ADHESIVE; PEG HYDROGELS; CROSS-LINKING; PROTEINS; PARTICLES; DELIVERY; GELATION; RELEASE;
D O I
10.1021/bm201261d
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mussel-inspired adhesive hydrogels represent innovative candidate medical sealants or glues. In the present work, we describe an enzyme-degradable mussel-inspired adhesive hydrogel formulation, achieved by incorporating minimal elastase substrate peptide Ala-Ala into the branched poly(ethylene glycol) (PEG) macromonomer structure. The system takes advantage of neutrophil elastase expression upregulation and secretion from neutrophils upon recruitment to wounded or inflamed tissue. By integrating adhesive degradation behaviors that respond to cellular cues, we expand the functional range of our mussel-inspired adhesive hydrogel platforms. Rapid (<1 min) and simultaneous gelation and adhesion of the proteolytically active, catechol-terminated precursor macromonomer was achieved by addition of sodium periodate oxidant. Rheological analysis and equilibrium swelling studies demonstrated that the hydrogel is appropriate for soft tissue-contacting applications. Notably, hydrogel storage modulus (G') achieved values on the order of 10 kPa, and strain at failure exceeded 200% strain. Lap shear testing confirmed the material's adhesive behavior (shear strength: 304 +/- 3.39 kPa). Although adhesive hydrogel degradation was not observed during short-term (27 h) in vitro treatment with neutrophil elastase in vivo degradation proceeded over several months following dorsal subcutaneous implantation in mice. This work represents the first example of an enzymatically degradable mussel-inspired adhesive and expands the potential biomedical applications of this family of materials.
引用
收藏
页码:4326 / 4334
页数:9
相关论文
共 50 条
  • [31] Synthesis of mussel-inspired polyvinyl alcohol adhesive gel
    Yang, Xiao
    Jia, Erpeng
    Yi, Shixiong
    Ran, Xiaoqi
    Gongneng Cailiao/Journal of Functional Materials, 2015, 46 (15): : 15016 - 15020
  • [32] Mussel-inspired hydrogel tissue adhesives for wound closure
    Rahimnejad, Maedeh
    Zhong, Wen
    RSC ADVANCES, 2017, 7 (75): : 47380 - 47396
  • [33] Mussel-inspired adhesive and tough hydrogel for drug release based on lignin-containing cellulose nanofiber
    Cheng, Gege
    Zeng, Fajian
    Liu, Xiuyu
    Yang, Qiuni
    Wei, Shizhen
    Huang, Qin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 306
  • [34] Wearable, Healable, and Adhesive Epidermal Sensors Assembled from Mussel-Inspired Conductive Hybrid Hydrogel Framework
    Liao, Meihong
    Wan, Pengbo
    Wen, Jiangru
    Gong, Min
    Wu, Xiaoxuan
    Wang, Yonggang
    Shi, Rui
    Zhang, Liqun
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (48)
  • [35] Injectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration
    Zhang, Fang-Xue
    Liu, Peng
    Ding, Wang
    Meng, Qing-Bing
    Su, Di-Han
    Zhang, Qi-Chen
    Lian, Rui-Xian
    Yu, Bao-Qing
    Zhao, Ming-Dong
    Dong, Jian
    Li, Yu-Lin
    Jiang, Li-Bo
    BIOMATERIALS, 2021, 278
  • [36] Mussel-inspired degradable antibacterial polydopamine/silica nanoparticle for rapid hemostasis
    Liu, Chunyu
    Yao, Weihe
    Tian, Meng
    Wei, Junnan
    Song, Qiling
    Qiao, Weihong
    BIOMATERIALS, 2018, 179 : 83 - 95
  • [37] Cytocompatibility of a mussel-inspired poly(lactic acid)-based adhesive
    Hollingshead, Sydney
    Siebert, Heather
    Wilker, Jonathan J.
    Liu, Julie C.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2022, 110 (01) : 43 - 51
  • [38] Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation
    Brubaker, Carrie E.
    Kissler, Hermann
    Wang, Ling-Jia
    Kaufman, Dixon B.
    Messersmith, Phillip B.
    BIOMATERIALS, 2010, 31 (03) : 420 - 427
  • [39] Synthesis and characterisation of a mussel-inspired hydrogel film coating for biosensors
    Millican, Jonathan M.
    Bittrich, Eva
    Caspari, Anja
    Poschel, Kathrin
    Drechsler, Astrid
    Freudenberg, Uwe
    Ryan, Timothy G.
    Thompson, Richard L.
    Pospiech, Doris
    Hutchings, Lian R.
    EUROPEAN POLYMER JOURNAL, 2021, 153
  • [40] Mussel-inspired agarose hydrogel scaffolds for skin tissue engineering
    Su, Ting
    Zhang, Mengying
    Zeng, Qiankun
    Pan, Wenhao
    Huang, Yijing
    Qian, Yuna
    Dong, Wei
    Qi, Xiaoliang
    Shen, Jianliang
    BIOACTIVE MATERIALS, 2021, 6 (03) : 579 - 588