A posteriori error analysis for discontinuous Galerkin methods for time discrete semilinear parabolic problems

被引:0
|
作者
Sabawi, Mohammad [1 ]
机构
[1] Tikrit Univ, Coll Educ Women, Math Dept, Tikrit, Salah Al Dean P, Iraq
来源
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2021年 / 46期
关键词
a posteriori error analysis; finite element methods; semilinear parabolic problems; discontinuous Galerkin methods; reconstruction technique; time-stepping methods; FINITE-ELEMENT METHODS; ELLIPTIC RECONSTRUCTION; STEPPING METHODS; HP-VERSION; DISCRETIZATION; APPROXIMATION; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A posteriori error estimates for time discretisations for semilinear parabolic (evolution) problems by the discontinuous Galerkin method DG(r) of arbitrary order r >= 0 are derived and analysed. The semilinear evolutionary problems of the form u' + Au = f(u) with A is either linear or monotone gamma(2)-angle bounded operator are considered. The main tool in this analysis is the time reconstruction function (U)over cap> of the approximate discrete solution U of the exact solution u. Two classes of nonlinearities are addressed: firstly, when the source term is globally Lipschitz continuous and secondly when the source term is locally Lipschitz continuous.
引用
收藏
页码:283 / 301
页数:19
相关论文
共 50 条
  • [1] A POSTERIORI ERROR CONTROL FOR DISCONTINUOUS GALERKIN METHODS FOR PARABOLIC PROBLEMS
    Georgoulis, Emmanuil H.
    Lakkis, Omar
    Virtanen, Juha M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) : 427 - 458
  • [2] A Posteriori Error Analysis for Implicit–Explicit hp-Discontinuous Galerkin Timestepping Methods for Semilinear Parabolic Problems
    Andrea Cangiani
    Emmanuil H. Georgoulis
    Mohammad Sabawi
    Journal of Scientific Computing, 2020, 82
  • [3] A Posteriori Error Analysis for Implicit-Explicit hp-Discontinuous Galerkin Timestepping Methods for Semilinear Parabolic Problems
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Sabawi, Mohammad
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (02)
  • [4] A Posteriori Error Bounds for Discontinuous Galerkin Methods for Quasilinear Parabolic Problems
    Georgoulis, Emmanuil H.
    Lakkis, Omar
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 351 - 358
  • [5] A posteriori error bounds for fully-discrete hp-discontinuous Galerkin timestepping methods for parabolic problems
    Emmanuil H. Georgoulis
    Omar Lakkis
    Thomas P. Wihler
    Numerische Mathematik, 2021, 148 : 363 - 386
  • [6] A posteriori error bounds for fully-discrete hp-discontinuous Galerkin timestepping methods for parabolic problems
    Georgoulis, Emmanuil H.
    Lakkis, Omar
    Wihler, Thomas P.
    NUMERISCHE MATHEMATIK, 2021, 148 (02) : 363 - 386
  • [7] A posteriori error estimates for discontinuous Galerkin methods of obstacle problems
    Wang, Fei
    Han, Weimin
    Eichholz, Joseph
    Cheng, Xiaoliang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 664 - 679
  • [8] THE DISCONTINUOUS GALERKIN METHOD FOR SEMILINEAR PARABOLIC PROBLEMS
    ESTEP, D
    LARSSON, S
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1993, 27 (01): : 35 - 54
  • [9] A POSTERIORI ERROR CONTROL OF DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC OBSTACLE PROBLEMS
    Gudi, Thirupathi
    Porwal, Kamana
    MATHEMATICS OF COMPUTATION, 2014, 83 (286) : 579 - 602
  • [10] A POSTERIORI ERROR ANALYSIS FOR HYBRIDIZABLE DISCONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS
    Cockburn, Bernardo
    Zhang, Wujun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 676 - 693