ON THE STABILITY OF BRAVAIS LATTICES AND THEIR CAUCHY-BORN APPROXIMATIONS

被引:32
作者
Hudson, To [1 ]
Ortner, Christoph [1 ]
机构
[1] Math Inst, Oxford OX1 3LB, England
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2012年 / 46卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
Bravais lattice; Cauchy-Born model; stability; CONTINUUM LIMITS;
D O I
10.1051/m2an/2011014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the stability of Bravais lattices and their Cauchy-Born approximations under periodic perturbations. We formulate a general interaction law and derive its Cauchy-Born continuum limit. We then analyze the atomistic and Cauchy-Born stability regions, that is, the sets of all matrices that describe a stable Bravais lattice in the atomistic and Cauchy-Born models respectively. Motivated by recent results in one dimension on the stability of atomistic/continuum coupling methods, we analyze the relationship between atomistic and Cauchy-Born stability regions, and the convergence of atomistic stability regions as the cell size tends to infinity.
引用
收藏
页码:81 / 110
页数:30
相关论文
共 23 条
[1]   A general integral representation result for continuum limits of discrete energies with superlinear growth [J].
Alicandro, R ;
Cicalese, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (01) :1-37
[2]  
[Anonymous], CAMBRIDGE TEXTS APPL
[3]  
[Anonymous], 1993, Lectures in Mathematics ETH Zurich
[4]   From molecular models to continuum mechanics [J].
Blanc, X ;
Le Bris, C ;
Lions, PL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (04) :341-381
[5]  
Born M., 1954, OXFORD CLASSIC TEXTS
[6]  
Braides A, 2002, MATH MECH SOLIDS, V7, P41, DOI [10.1177/1081286502007001229, 10.1177/108128602024229]
[7]   Accuracy of quasicontinuum approximations near instabilities [J].
Dobson, M. ;
Luskin, M. ;
Ortner, C. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2010, 58 (10) :1741-1757
[8]   SHARP STABILITY ESTIMATES FOR THE FORCE-BASED QUASICONTINUUM APPROXIMATION OF HOMOGENEOUS TENSILE DEFORMATION [J].
Dobson, M. ;
Luskin, M. ;
Ortner, C. .
MULTISCALE MODELING & SIMULATION, 2010, 8 (03) :782-802
[9]   Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice [J].
Friesecke, G ;
Theil, F .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (05) :445-478
[10]   Stability and elastic properties of the stress-free B2 (CsCl-type) crystal for the morse pair potential model [J].
Guthikonda, Venkata Suresh ;
Elliott, Ryan S. .
JOURNAL OF ELASTICITY, 2008, 92 (02) :151-186