Shrinking self-similar solutions of a nonlinear diffusion equation with nondivergence form

被引:5
|
作者
Wang, CP [1 ]
Yin, JX [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
self-similar solution; shrinking; existence; uniqueness; singularity;
D O I
10.1016/j.jmaa.2003.08.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the shrinking self-similar solutions of the nonlinear diffusion equation with nondivergence form partial derivativeu/partial derivativet = u(m) Deltau (mgreater than or equal to1). This kind of solutions possess the properties of finite speed propagation of perturbations and their supports are shrinking. We establish the existence and uniqueness for this kind of solutions. In addition, we study some properties of the shrinking self-similar solutions. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:387 / 404
页数:18
相关论文
共 50 条
  • [1] Self-similar solutions for a nonlinear radiation diffusion equation
    Garnier, Josselin
    Malinie, Guy
    Saillard, Yves
    Cherfils-Clerouin, Catherine
    PHYSICS OF PLASMAS, 2006, 13 (09)
  • [2] Numerical investigations on self-similar solutions of the nonlinear diffusion equation
    Li, Yibao
    Kim, Junseok
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2013, 42 : 30 - 36
  • [3] THE SELF-SIMILAR SOLUTIONS TO A FAST DIFFUSION EQUATION
    QI, YW
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1994, 45 (06): : 914 - 932
  • [4] SELF-SIMILAR BEHAVIOR FOR THE EQUATION OF FAST NONLINEAR DIFFUSION
    KING, JR
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 343 (1668): : 337 - 375
  • [5] Self-similar solutions to the derivative nonlinear Schrodinger equation
    Fujiwara, Kazumasa
    Georgiev, Vladimir
    Ozawa, Tohru
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (12) : 7940 - 7961
  • [6] More self-similar solutions of the nonlinear Schrodinger equation
    Cazenave, Thierry
    Weissler, Fred B.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (03): : 355 - 365
  • [7] Scattering and self-similar solutions for the nonlinear wave equation
    Hidano, K
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (04) : 2507 - 2518
  • [8] Nonlinear Diffusion of Dislocation Density and Self-Similar Solutions
    Piotr Biler
    Grzegorz Karch
    Régis Monneau
    Communications in Mathematical Physics, 2010, 294 : 145 - 168
  • [9] Nonlinear Diffusion of Dislocation Density and Self-Similar Solutions
    Biler, Piotr
    Karch, Grzegorz
    Monneau, Regis
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 294 (01) : 145 - 168
  • [10] SELF-SIMILAR SOLUTIONS OF THE NONLINEAR DIFFUSION EQUATION AND APPLICATION TO NEAR-CRITICAL FLUIDS
    FROHLICH, T
    BOUQUET, S
    BONETTI, M
    GARRABOS, Y
    BEYSENS, D
    PHYSICA A, 1995, 218 (3-4): : 419 - 436