Forced oscillations of a damped 'Benjamin-Bona-Mahony' equation in a quarter plane

被引:0
|
作者
Yang, YM [1 ]
Zhang, BY [1 ]
机构
[1] Beijing Technol & Business Univ, Dept Math & Phys, Beijing, Peoples R China
来源
Control Theory of Partial Differential Equations | 2005年 / 242卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This chapter studies an infinite-dimensional dynamic system described by a damped Benjamin-Bona-Mahony equation posed in a quarter plane. It shows that if the boundary forcing of the system is time periodic with small amplitude, then the system admits a unique time-periodic solution that, as a limit cycle, is globally exponentially stable. In other words, it comprises an exponentially stable global attractor for the system.
引用
收藏
页码:375 / 386
页数:12
相关论文
共 50 条
  • [21] Unique continuation for the Benjamin-Bona-Mahony
    Davila, Mario
    Perla Menzala, Gustavo
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (03): : 367 - 382
  • [22] STABILITY OF THE BENJAMIN-BONA-MAHONY WAVES
    MURAWSKI, K
    ANNALEN DER PHYSIK, 1989, 46 (06) : 401 - 407
  • [23] INSTABILITY OF THE SOLITARY WAVES FOR THE GENERALIZED BENJAMIN-BONA-MAHONY EQUATION
    Jia, Rui
    Wu, Yifei
    arXiv, 2023,
  • [24] On the Convergence of Difference Schemes for Generalized Benjamin-Bona-Mahony Equation
    Berikelashvili, Givi
    Mirianashvili, Manana
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (01) : 301 - 320
  • [25] On the Solutions of the Space and Time Fractional Benjamin-Bona-Mahony Equation
    Mirzazadeh, M.
    Ekici, Mehmet
    Sonmezoglu, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A3): : 819 - 836
  • [26] On the general form of the Benjamin-Bona-Mahony equation in fluid mechanics
    Zhang, H
    Wei, GM
    Gao, YT
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2002, 52 (03) : 373 - 377
  • [27] Artificial boundary conditions for the linearized Benjamin-Bona-Mahony equation
    Besse, Christophe
    Mesognon-Gireau, Benoit
    Noble, Pascal
    NUMERISCHE MATHEMATIK, 2018, 139 (02) : 281 - 314
  • [28] Finite-dimensional behaviour for the Benjamin-Bona-Mahony equation
    Wang, BX
    Yang, WL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (13): : 4877 - 4885
  • [30] On the convergence of difference schemes for the Benjamin-Bona-Mahony (BBM) equation
    Achouri, T.
    Khiari, N.
    Omrani, K.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) : 999 - 1005